

Kamira Court Precinct – Stage 2 (Building A + C) Mixed-Use Development

2021–7 (28) Traffic Impact Assessment

Traffwise Consultants Pty Ltd

info@traffwise.com.au

Project Details			
Title	Traffic Impact Assessment – Ver 02		
Project Type	High-Density Residential Development		
Project Location	Kamira Avenue, Villawood NSW 2163		
Client	Traders In Purple		
Project Reference	2021 – 7 (28)		
Relevant Council	Fairfield City Council		
	Ali Raza		
	(CPEng, NER, MIEAust, ProfCertAM, Sr. Road Safety Auditor)		
Prepared By	Principal Traffic and Road Safety Engineer		
	Traffwise Consultants Pty Ltd		
	araza@traffwise.com.au		

Document History				
Version	Description	Release Date	Prepared By	
01	Draft	10 th April 2022	AR	
02	Final	13 th April 2022	AR	

Info@traffwise.com.au (+61) 412 147 299

Disclaimer: This report is believed to be true and correct at the time of writing. It is based on the information and data provided by the client, designers, architect and other relevant organisations during preparation. Traffwise Consultants Pty Ltd does not accept any contractual, tortuous or other form of liability for any consequences arising from its use. People using the information in the report should apply and rely on their own skill and judgement to a particular issue they are considering.

Table of Contents

1.	Intro	oduct	ion	5
1	l.1	Ove	rview	5
2	1.2	Back	ground	5
2	L.3	Broa	der Site Context	7
2	L.4	Refe	rence Documents/Websites	7
1	1.5	Rep	ort Structure	8
2.	Exist	ting C	Conditions	9
2	2.1	Proj	ect Site Locality	9
2	2.2	Exist	ing Condition	9
2	2.3	Exist	ing Access Provisions	10
2	2.4	Activ	ve Travel Opportunities	10
2	2.5	Publ	ic Transport Accessibility	11
	2.4.2	1	Project Site – Existing Train Services	11
	2.4.2	2	Project Site – Existing Bus Services	12
ź	2.6	Exist	ing Traffic Conditions	13
	2.5.3	1	Based on Typical Traffic Trends	13
	2.5.2	2	Based on SIDRA Modelling	14
3.	Prop	oosed	Development	15
4.	Traf	fic As	sessment	17
4	1.1	Trip	Generation Rates	17
4	1.2	Prop	oosed Stage 2 Development – Trip Generation	19
	4.2.2	1	Building A Trip Generation	19
	4.2.2	2	Building C Trip Generation	20
	4.2.3	3	Proposed Stage 2 – Trip Generation Summary	21
5.	Traf	fic M	odelling and Potential Traffic Impacts	22
5	5.1	Mes	oscopic Model Coverage – Project Site	22
5	5.2	Mes	oscopic Model – Land Use Assumptions	23
5	5.3	Exist	ing Traffic Demand – Mesoscopic Model-Based	23
	5.3.2	1	AM peak Demand	23
	5.3.2	2	PM peak Demand	25
5	5.4	Trip	Distribution Trend – Mesoscopic Model-Based	26
5	5.5	Кеу	Intersection Demand Flow – Mesoscopic Model-Based	28
5	5.6	Ado	pted Phasing	33
5	5.7	Inte	rsection Performance Criteria	34

	5.8	Pote	ential Traffic Impacts	34
	5.8.	1	Woodville Road and Villawood Road, and Llewellyn Avenue	35
	5.8.	2	Woodville Road and Howatt Street, and Binna Burra Street	35
	5.8.	3	Woodville Road and Kirrang Avenue	36
	5.8.	4	The Horsley Drive and River Avenue	37
	5.8.	5	Villawood Road and Villawood Place	37
	5.9	Pub	lic Transport Provisions	38
	5.10	Prop	posed Access Arrangements	38
	5.11	Acce	essibility of Service Vehicle	38
6.	Par	king A	Assessment	39
	6.1	Stat	utory Parking Requirements	39
	6.1.	1	Car Parking Requirements	39
	6.1.	2	Car Parking Requirements – Non-Residential Component	39
	6.1.	3	Car Parking Requirements – Bicycle and Motorcycles	39
	6.2	Park	king Adequacy Review	39
	6.3	Park	king Layout Review	41
7.	Find	dings .		42
Ap	opendi	x A		43
Ap	opendi	х В		48
Ap	opendi	x C		57

List of Figures

Figure 1	Villawood Town Centre	5
Figure 2	Villawood Town Centre – Precinct Plan	6
Figure 3	Villawood Town Centre – District Context	7
Figure 4	Project Site – Location and Surrounding Road Network	9
Figure 5	Project Site – Existing Condition and Surrounding Land-Use	10
Figure 6	Project Site – Walkability Catchment	11
Figure 7	Project Site – Cycling Catchment	11
Figure 8	Project Site – Nearest Train Station	12
Figure 9	Project Site – Bus Stops and Walking Distance to the Nearest Stop	13
Figure 10	Existing Typical Traffic Flow Condition – PM Peak	14
Figure 11	Proposed Development – Perspective	15
Figure 12	Project Site – Existing Zoning	16
Figure 13	Project Site – Mesoscopic Model Coverage	22
Figure 14	Travel Zone Number 1215	23
Figure 15	2020 AM Peak – Link Volume Plot	24
Figure 16	2031 AM Peak – Link Volume Plot	24
Figure 17	2020 PM Peak – Link Volume Plot	25

Figure 18	2031 PM Peak – Link Volume Plot	25
Figure 19	2020 AM Peak – Select Link Plots – Trip Distribution	26
Figure 20	2031 AM Peak – Select Link Plots – Trip Distribution	26
Figure 21	2020 PM Peak – Select Link Plots – Trip Distribution	27
Figure 22	2031 PM Peak – Select Link Plots – Trip Distribution	27
Figure 23	Typical Trip Distribution Trend	28
Figure 24	2020 AM Peak – Demand Flow at Key Intersections (Cars)	29
Figure 25	2020 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)	29
Figure 26	2031 AM Peak – Demand Flow at Key Intersections (Cars)	30
Figure 27	2031 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)	30
Figure 28	2020 PM Peak – Demand Flow at Key Intersections (Cars)	31
Figure 29	2020 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)	31
Figure 30	2031 PM Peak – Demand Flow at Key Intersections (Cars)	32
Figure 31	2031 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)	32
Figure 32	Adopted Cycle and Phase Time – Woodville Road / Kirrang Avenue	33
Figure 33	Adopted Cycle and Phase Time – Woodville Road / Llewellyn Road / Villawood Road.	33
Figure 34	Adopted Cycle and Phase Time – Woodville Road / Binna Nurra Street	33
Figure 35	Adopted Cycle and Phase Time – River Avenue and The Horsely Drive	34
Figure 36	Proposed Access Points – Villawood Road	38

List of Tables

Bus Route Summary	. 12
Proposed Development Yield – Stage 2 (Building C)	. 15
Proposed Development Yield – Stage 2 (Building A)	. 16
Trip Generation Rates – Supermarket	. 17
Trip Generation Rates – Speciality Shops	. 17
Peak Hour Trip Generation Rates – Child Care Centre	. 18
Trip Generation Rates (Sydney Average) – Medical Centre	. 18
Trip Generation – Different Land-Uses (Building A)	. 19
Trip Generation – Different Land-Uses (Building C)	. 20
Total Trip Generation Summary	.21
Employment Forecast	23
Population Forecast	. 23
RMS Level of Service Criteria	34
Proposed Car Parking Provisions	.40
	Bus Route Summary Proposed Development Yield – Stage 2 (Building C) Proposed Development Yield – Stage 2 (Building A) Trip Generation Rates – Supermarket Trip Generation Rates – Speciality Shops Peak Hour Trip Generation Rates – Child Care Centre. Trip Generation Rates (Sydney Average) – Medical Centre. Trip Generation – Different Land-Uses (Building A). Trip Generation – Different Land-Uses (Building C). Total Trip Generation Summary Employment Forecast Population Forecast RMS Level of Service Criteria Proposed Car Parking Provisions

1. Introduction

1.1 Overview

Traders in Purple (TIP) has commissioned Traffwise Consultants Pty Ltd (Traffwise) to undertake a Traffic Impact Assessment (TIA) study for the proposed Stage 2 (*Building A + C)*, mixed-use development, as part of Kamira Court Precinct development plan in accordance with the Urban Framework Plan for Villawood Town Centre.

Figure 1Villawood Town CentreSource: Villawood Town Centre Development Control Plan 2020

1.2 Background

The Western City District Plan sets targets for infrastructure and community services, including transport, schools, health and community facilities, and recreation, to achieve the 40-year vision for Greater Sydney. The Council adopted the Villawood Town Centre Development Control Plan 2020 (DCP) to assist in achieving the District Plan's targets for Fairfield City Council and the desired economic growth.

Fairfield City Council (Council) commissioned an urban design study for the Villawood Town Centre in 2017. Based on the principles set out in the NSW Government's South West District Plan, the study identified key urban design, built form and place-making actions to improve the vitality and vibrancy of the Villawood Town Centre.

The Urban Design Study established an Urban Framework Plan to guide future development in the Town Centre. The desired redevelopment for Villawood describes providing new community facilities,

medium to high density, social, affordable and private housing, active safe streets and improved connections throughout the Town Centre.

As described in the DCP and shown in **Figure 2**, the Town Centre comprises the following two precincts:

- Business Precinct
- Residential Precinct

 Figure 2
 Villawood Town Centre – Precinct Plan

 Source: Villawood Town Centre Development Control Plan 2020

The proposed Stage 2 (*Building A + C*) is part of the residential precinct development with an expected yield of residential units, a supermarket, retail, medical centre and a childcare facility. The details of the proposed development are provided in **Section 3**.

1.3 Broader Site Context

As described earlier, the proposed development site is part of the Villawood Town Centre located to the east of the Fairfield Local Government Area. The town centre is approximately two (2) km east of Fairfield and 10 km from both Parramatta *(to the north)* and Bankstown *(to the east)*.

Figure 3 illustrates the district context plan of the Villawood Town Centre.

 Figure 3
 Villawood Town Centre – District Context

 Source: Villawood Town Centre Urban Design Study – Fairfield City Council Website (Link, accessed on the 1st of May 2021)

1.4 Reference Documents/Websites

- Villawood Town Centre Urban Design Study
- Google Map and Google Traffic Map
- Google Earth Pro
- Fairfield Citywide Development Control Plan (DCP)
- Villawood Town Centre Development Control Plan 2020
- Information and Development Plans provided by the Architect/Client
- RMS Guide to Traffic Generating Developments (2002)
- RMS Guide to Traffic Generating Developments Updated Traffic Surveys (TDT 2013/04a)
- NSW Department of Planning and Environment's Apartment Design Guide July 2015
- Land and Housing Corporation Website
- RMS Traffic Modelling Guidelines (2013)
- Australian Standards AS/NZS 2890.1:2004 and AS/NZS 2890.6:2009

1.5 Report Structure

- Section 1: Introduction
- Section 2: Existing Conditions
- Section 3: Proposed Development
- Section 4: Traffic Assessment
- Section 5: Traffic Modelling and Potential Traffic Impacts
- Section 6: Parking Assessment
- Section 7: Findings

2. Existing Conditions

2.1 **Project Site Locality**

The project site is located at the southwest corner of the Villawood Road and Kamira Court intersection. This parcel of the land is of the Kamira Court Residential Precinct, owned by Land and Housing Corporation *(LAHC)*.

Figure 4 illustrates the locality of the project site and the surrounding road network.

 Figure 4
 Project Site – Location and Surrounding Road Network

 Source: DKO Architecture
 Project Site – Location and Surrounding Road Network

2.2 Existing Condition

It is evident from **Figure 5** that the project site is vacant land with no existing development. **Figure 5** also shows that the project site is bounded by:

- Kamira Avenue and existing residential developments to the west
- Villawood Road and Villawood Station to the north
- Vacant land to the south for future development of Stage 1 (*Building B*) of Kamira Court Residential Precinct
- Residential and commercial development (47 Villawood Place) to the east.

 Figure 5
 Project Site – Existing Condition and Surrounding Land-Use

 Source: Nearmap
 Project Site – Existing Condition and Surrounding Land-Use

2.3 Existing Access Provisions

At present, the project site has been fenced with an informal access point on Kamira Court, Villawood Road, and Kamira Avenue.

It is noted from the provided plans that the section of the Kamira Court running along the southern boundary of the project site will be demolished, and the primary vehicular access will be provided along the northern periphery on Villawood Road. (See **Section 5.10**)

2.4 Active Travel Opportunities

Figure 6 and **Figure 7** show the 10-minute walkability catchment and 15-minute cycling catchment of the proposed development site.

It is evident that residents of the proposed development would have the opportunity to walk and cycle to access many services in the vicinity, including the train station and bus stops.

 Figure 6
 Project Site – Walkability Catchment

 Source:https://www.walkscore.com/score/28-villawood-rd-villawood-nsw-australia (Accessed online on the 21st of November 2021)

 Figure 7
 Project Site – Cycling Catchment

 Source:https://www.walkscore.com/score/28-villawood-rd-villawood-nsw-australia (Accessed online on the 21st of November 2021)

2.5 Public Transport Accessibility

The broader area of the Villawood Town Centre *(including the project site)* is well serviced by train and bus services providing access to Fairfield City Centre and other larger service and employment centres such as Liverpool, Parramatta CBD and the Sydney CBD.

2.4.1 Project Site – Existing Train Services

Figure 8 illustrates that the Villawood Station is in close proximity, i.e., within 350 metres of walking distance from the project site. The average walking time to the station would be only four minutes promoting active travel and less reliance on private vehicles.

 Figure 8
 Project Site – Nearest Train Station

 Source: Google Maps (Accessed online on the 3^{rd of} April 2022)

Villawood Station is serviced by the following three lines:

- Parramatta or Leppington to City (T2)
- City to Liverpool or Lidcombe via Bankstown (T3)
- Liverpool or Lidcombe to City via Bankstown (T3)

2.4.2 Project Site – Existing Bus Services

The project is well serviced by the existing bus routes with bus stops concentrated on River Avenue to the north of the Railway, Woodville Road and Villawood Place.

As evident from **Figure 9**, the nearest bus stop **(Name:** Villawood Place Shops, **No:**2163165**)** is located at a distance of only 240 metres from the project site with an average waking time of three minutes.

 Table 1 summarises the key routes operating in the vicinity of the project site.

Table 1	Bus	Route Summary	
Road Name		Bus Routes Number	Route Description
Villawood Plac	ce	905 and S4	905: Bankstown to Fairfield
Woodville Road 907, 905 and S4 907: Bankstown to Parramatt		907, 905 and S4	907: Bankstown to Parramatta
River Avenue	е	4T3, N50, S4	N50: Liverpool to City Town Hall (Night Service) 4T3: Liverpool to Bankstown (Train Replacement Bus Services)

 Figure 9
 Project Site – Bus Stops and Walking Distance to the Nearest Stop

 Source: Google Maps (Accessed online on the 3rd of April 2022)

2.6 Existing Traffic Conditions

2.5.1 Based on Typical Traffic Trends

Traffwise has referred to the Google Typical Traffic Map to assess the existing traffic flow condition in the project site's vicinity. The typical traffic map considers historical traffic conditions on a road network at a particular time of a specific day to reflect an average traffic condition.

Figure 10 illustrates the typical traffic condition in the vicinity of the project site at 03:30 PM, and Weekday PM Peak Hour on Thursdays.

It is evident from the typical traffic map that the traffic flow condition on the existing road network is satisfactory. However, the map indicates congestion at the intersections on Woodville Road.

Figure 10Existing Typical Traffic Flow Condition – PM PeakSource: Google Live Traffic Maps (Accessed on 3rd April 2022)

2.5.2 Based on SIDRA Modelling

Please refer to Section 5 for detailed results and analysis.

3. Proposed Development

Traders in Purple are planning to submit a development application (DA) for the proposed mixed-use development of Stage 2 (*Building A + C*) within the Kamira Court Precinct area.

Figure 11 illustrates the perspective of the proposed development. The layout plans for each floor are provided in **Appendix A**.

 Figure 11
 Proposed Development – Perspective

 Source: DKO Architecture (NSW) Pty Ltd

Based on the provided information, **Table 2** and **Table 3** summarise the yield for the residential and non-residential components in *Building C* and *Building A*, respectively.

As evident, the proposed Building C development will comprise 64 residential units, a Child Care Centre with the capacity of 120 students and a Medical Centre.

Residential Component			
Unit Type	Number of Units		
1 Bed Unit	4		
2 Bed Unit	50		
3 Bed Unit	10		
Total Number of Units	64		
Non-Residential Component			
Child Care Centre	120 Students		
Medical Centre 254 m ² (Approx. 08 Consulting Rooms			

Table 2Proposed Development Yield – Stage 2 (Building C)

The proposed Building A development will comprise 158 residential units, a supermarket and a retail area.

Table 3	le 3 Proposed Development Yield – Stage 2 (Building A)				
	Residential Component				
	Unit Type	Number of Units			
	1 Bed Unit 24				
2 Bed Unit 108					
3 Bed Unit		26			
	Total Number of Units 158				
Non-Residential Component					
	Supermarket 1188 m ²				
Retail 1263 m ²		1263 m ²			

Note:

Figure 3 shows that the project site is zoned R4 *(High-Density Residential)* in the Fairfield Local Environmental Plan 2013 (LEP).

TIP has already submitted a separate application proposing modification in the LEP to develop a supermarket and retail area in Building A as part of the Kamira Court Precinct development.

4. Traffic Assessment

4.1 Trip Generation Rates <u>Residential Component</u>

As advised by Fairfield City Council, the trip generation rate of **0.3 trips per hour per unit** was adopted for both the AM and PM peak periods.

<u>Supermarket</u>

The RMS Guide to Traffic Generating Developments (2002) specifies Shopping Centre's trip generation rates average trip rates in the peak hours on a weekday evening and Saturday morning/afternoon.

The trip generation models for shopping centres consider the following land uses:

- **A(S):** Slow Trade gross leasable floor area (Gross Leasable Floor Area in square metres) includes major department stores such as David Jones and Grace Bros., furniture, electrical and white goods stores.
- **A(F):** Faster Trade GLFA includes discount department stores such as K-Mart and Target, together with larger specialist stores such as Fosseys.
- **A(SM):** Supermarket GLFA includes stores such as Franklins and large fruit markets. A(SS): Specialty shops and secondary retail GLFA include specialty shops and take-away stores such as McDonalds. These stores are grouped as they tend to not be primary attractors to the centre.
- A(OM): Office, medical GLFA: includes medical centres and general business offices.

Table 4 summarises the specified average trip rates for supermarkets.

Table 4

Trip Generation Rates – Supermarket

Thursday PM Peak (1 Hour) per 100 m ² of GLFA	15.5
Friday PM Peak (1 Hour) per 100 m ² of GLFA	13.8
Saturday Peak (1 Hour) per 100 m ² of GLFA	14.7
Daily Trips per 100 m ² of GLFA	121

Source: RMS Guide to Traffic Generating Developments (2002)

- The highest peak hour trip rate (15.5 per 100 m² of GLFA) has been adopted
- The RMS guide does not specify the trip rate for the weekday AM peak period. Therefore, it is assumed that trip generation in a typical weekday AM peak will be 25% of the PM peak period for this assessment. This will ensure conservative assessment.
- It is assumed that the daily trips from the proposed retail area would be ten (10) times the peak hour trip generation on a typical weekday.

Specialty Shops

The RMS Guide to Traffic Generating Developments (2002) specifies Specialty Shops' average trip rates. To ensure consistency with the adopted supermarket trip rates, **Table 5** summarises the adopted average trip rates for Specialty Shops on a typical Thursday evening peak.

Table 5Trip Generation Rates – Speciality Shops

Thursday PM Peak (1 Hour) per 100 m ² of GLFA	4.6
--	-----

Source: RMS Guide to Traffic Generating Developments (2002)

To ensure robust and conservative assessment:

- The RMS guide does not specify the trip rate for the weekday AM peak period. Therefore, it is assumed that trip generation in a typical weekday AM peak will be 50% of the PM peak period for this assessment.
- It is assumed that the daily trips from the proposed retail area would be ten (10) times the peak hour trip generation on a typical weekday.

Child Care Centre

The trip generation rates for a Child Care Centre are specified in the RMS Guide to Traffic Generating Developments (2002).

The RMS guide specifies different trip rates for Pre-School, Long-Day Care and Before/After Care childcare facilities. The proposed childcare centre's exact use is not clear. Therefore, for the purposes of this assessment, the maximum trip generation rates have been adopted.

RMS guide specifies a maximum rate of 1.4 trips and 0.8 trips per child in a <u>two-hour</u> AM and <u>one-and-a-half-hour</u> PM peak period. However, to assess one-hour peak trip generation and to ensure conservative assessment, 75% of the specified trip rates have been adopted for one-hour peak period trip generation. The adopted trip rates are summarised in **Table 6**:

 Table 6
 Peak Hour Trip Generation Rates – Child Care Centre

Peak Period	Rates – RMS Guide	Rates Adopted
AM Peak	1.4 per child	1 per child
	(two-hour based)	(one-hour based)
PM Peak	0.8 per child	0.6 per child
TWI TEak	(one and a half-hour based)	(one-hour based)

<u>The daily trip generation of a maximum of four (04) trips per child was assumed, considering two drop-off trips (one IN and one OUT) and two pick-up trips (one IN and one OUT) on a typical day.</u>

Medical Centre

For medical centre, the traffic generation rates adopted for this analysis are sourced from RMS Trip Generation Surveys, Medical Centres Analysis Report *(TEF Consulting, 2015)*. The medical centre trip rates adopted for this study are described in **Table 7**.

 Table 7
 Trip Generation Rates (Sydney Average) – Medical Centre

AM Peak (1 Hour) per Consulting Room	2.8
PM Peak (1 Hour) per Consulting Room	3.2
Daily Trips per Consulting Room	23.2

Source: RMS Trip Generation Surveys, Medical Centres Analysis Report (Table 3.2 (page 11), TEF Consulting, 2015)

4.2 Proposed Stage 2 Development – Trip Generation

4.2.1 Building A Trip Generation

Table 8 summarises the detailed trip generation from Building A for each proposed land use based onthe adopted trip rates described in **Section 4.1**. The total trip generation from the proposed Stage 2development is summarised in **Table 10**.

Trip Generation - Building A Stage 2							
Residential Component - High Density							
Unit Type	Unit Type Quantity Number of Bedrooms Trip Generation						
1-Bed Unit	24	24					
2-Bed Unit	108	216	Weekday AM	Weekday PM	Daily Trins		
3-Bed Unit	26	78	Peak	Peak	Duny mps		
Total Number	of Units	158					
		TOTAL TRIPS	47	47	395.0		
		IN	9	38	198		
		OUT	38	9	198		
		Supermarke	rt				
Туре	GLFA	A <i>m</i> 2	Weekday AM Peak	Weekday PM Peak	Daily Trips		
Supermarket	11	.88					
		TOTAL TRIPS	46	184	1841		
		IN	23	92	921		
		OUT	23	92	921		
		Other Retai	1				
Type Other Retail	GLF 4	A m2 163	Weekday AM Peak	Weekday PM Peak	Daily Trips		
	·	TOTAL TRIPS	29	58	581		
		IN	15	29	290		
		OUT	15	29	290		

 Table 8
 Trip Generation – Different Land-Uses (Building A)

4.2.2 Building C Trip Generation

Table 8 summarises the detailed trip generation from Building C for each proposed land use based on the adopted trip rates described in **Section 4.1**. The total trip generation from the proposed Stage 2 development is summarised in **Table 10**.

Trip Generation - Building C Stage 2							
Residential Component - High Density							
Unit Type Quantity Number of Bedrooms Trip Generation							
1-Bed Unit	4	4					
2-Bed Unit	50	100	Weekday AM	Weekday PM	Daily Tring		
3-Bed Unit	10	30	Peak	Peak	Daily Imps		
Total Number of	Units	64					
		TOTAL TRIPS	19	19	160.0		
		IN	4	15	80		
		OUT	15	4	80		
	Child Care Centre						
	-						
<i>Type</i> Child Care Centre	Number	of Students	Weekday AM Peak	Weekday PM Peak	Daily Trips		
Type Child Care Centre	Number	of Students 120 TOTAL TRIPS	Weekday AM Peak 120	Weekday PM Peak 72	Daily Trips		
<i>Type</i> Child Care Centre	Number	of Students 120 TOTAL TRIPS IN	Weekday AM Peak 120 60	Weekday PM Peak 72 36	Daily Trips 480 240		
Type Child Care Centre	Number	of Students 120 TOTAL TRIPS IN OUT	Weekday AM Peak 120 60 60	Weekday PM Peak 72 36 36	Daily Trips 480 240 240		
<i>Type</i> Child Care Centre	Number	of Students 120 TOTAL TRIPS IN OUT Medical C	Weekday AM Peak 120 60 60 Eentre	Weekday PM Peak 72 36 36 36	Daily Trips 480 240 240		
Type Child Care Centre Type Medical Centre	Number	of Students 120 TOTAL TRIPS IN OUT Medical C ing Rooms	Weekday AM Peak 120 60 60 Centre Weekday AM Peak	Weekday PM Peak 36 36 Weekday PM Peak	Daily Trips 480 240 240 Daily Trips		
Type Child Care Centre Type Medical Centre	Number	of Students 120 TOTAL TRIPS IN OUT Medical C ting Rooms 8 TOTAL TRIPS	Weekday AM Peak 120 60 60 Centre Weekday AM Peak	Weekday PM Peak 72 36 36 36 Weekday PM Peak	Daily Trips 480 240 240 240 Daily Trips 186		
Type Child Care Centre Type Medical Centre	Number	of Students 120 TOTAL TRIPS IN OUT Medical C ing Rooms 8 TOTAL TRIPS _IN	Weekday AM Peak 120 60 60 Centre Weekday AM Peak 22 11	Weekday PM Peak 36 36 Weekday PM Peak 26 13	Daily Trips 480 240 240 Daily Trips 186 93		

4.2.3 Proposed Stage 2 – Trip Generation Summary

Table 10 summarises the expected trip generation from the proposed Stage 2 development. It is evident that the proposed land use mix is expected to generate 284 and 406 trips in the AM and PM peaks respectively.

Table 10

Total Trip Generation Summary

Total Peak Hour Trips – Stage 2							
Peak Period IN Out Total							
122	162	284					
223	183	406					
	ur Trips – Sta IN 122 223	IN Out 122 162 223 183					

It is important to note that trip rates described in **Section 4.1** include both In and Out trips. The following typical IN and OUT trip ratios were adopted for this assessment:

For Residential Development: 20% IN and 80% OUT in AM Peak and opposite IN and OUT ratios in the PM Peak.

For Commercial Development: 50% IN and 50% OUT in both AM and PM peaks

It is important to note that **Stage 1 (Building B)** traffic was also considered for modelling *With Development Traffic* scenarios.

5. Traffic Modelling and Potential Traffic Impacts

Traffwise has carried out a Net Difference modelling of key intersections to assess the impacts of the proposed development traffic.

The following key intersections were assessed as part of the study:

- 1. Woodville Road/Kirrang Avenue
- 2. Woodville Road/Howatt Street/Binna Burra Street
- 3. Villawood Road/Villawood Place
- 4. Woodville Road / Villawood Road / Llewellyn Avenue
- 5. The Horsley Drive/River Avenue

The modelling files and results have already been reviewed by Council's traffic consultant **(Stantec)**. As per Stantec's advice, Traffwise has developed a network model of the first four intersections, adopting existing and future traffic demand.

5.1 Mesoscopic Model Coverage – Project Site

Fairfield City Council (Council) has recently completed a mesoscopic modelling study for a broader area. **Figure 4** illustrates the study area of the mesoscopic model, which includes the project site.

 Figure 13
 Project Site – Mesoscopic Model Coverage

 Source: Stantec/Council
 Stantec/Council

As per the provided information, the mesoscopic model does not include any traffic generators associated with the projects site.

Which indicates that traffic demand has not been assigned to Kamira Court Precinct in Council's mesoscopic model.

5.2 Mesoscopic Model – Land Use Assumptions

Figure 5 shows the travel zone number 1215 of the mesoscopic model. This zone includes the Kamira Court Precinct site and covers an area bounded by River Avenue, Woodville Road, Kamira Avenue and a small section of Kirrang Avenue.

 Figure 14
 Travel Zone Number 1215

 Source: Stantec/Council

As per the provided information, **Table 11** and **Table 12** summarise the employment and population forecast for the next twenty years (up to 2041).

Table 11	Employment Forecast					
TZ16_CODE	TZ16_name	EMP_2021	EMP_2026	EMP_2031	EMP_2036	EMP_2041
1215	Villawood_Bunnings	122	141	151	157	166

Table 12Population Forecast

TZ16_CODE	TZ16_name	ERP_2021	ERP_2026	ERP_2031	ERP_2036	ERP_2041
1215	Villawood_Bunnings	267	782	1022	1161	1474

It is evident that a significant increase (280%) in population is expected from 2021 to 2031, with a moderate rise in employment.

As described in Section 5.1, the above forecast doesn't include the development yield of the Kamira Court Precinct.

5.3 Existing Traffic Demand – Mesoscopic Model-Based

Council's traffic consultant has provided Link Volume Plots (LVP) for both 2021 and 2031 scenarios. The provided plots show one-hour traffic demand on the road network under AM and PM peak hours.

5.3.1 AM peak Demand

Figure 15 and **Figure 16** shows the AM peak LVP under the 2021 and 2031 scenario, respectively. It is noted that the traffic demand on key roads is expected to increase moderately in 2031, with evident high traffic flow on Woodville Road. The 2031 mesoscopic model for AM Peak period also indicates a significant increase in southbound traffic on Woodville Road.

 Figure 15
 2020 AM Peak – Link Volume Plot

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 16
 2031 AM Peak – Link Volume Plot

 Source: Mesoscopic Model developed by Stantec/Council

5.3.2 PM peak Demand

Figure 17 and **Figure 18** shows the PM peak LVP under the 2021 and 2031 scenario, respectively. Like the traffic trends in the AM peak period, a moderate increase in the traffic demand on key roads is expected in the 2031 PM peak period.

 Figure 17
 2020 PM Peak – Link Volume Plot

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 18
 2031 PM Peak – Link Volume Plot

 Source: Mesoscopic Model developed by Stantec/Council

5.4 Trip Distribution Trend – Mesoscopic Model-Based

Figure 19 to **Figure 22** show AM and PM peak trip distribution to and from travel zone number 1215. The trip distribution is based on provided Select Link Plots (SLP) extracted from the Council's mesoscopic model.

The available data for both peak periods indicate similar trip distribution trends in the 2021 and 2031 scenarios.

 Figure 19
 2020 AM Peak – Select Link Plots – Trip Distribution

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 20
 2031 AM Peak – Select Link Plots – Trip Distribution

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 21
 2020 PM Peak – Select Link Plots – Trip Distribution

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 22
 2031 PM Peak – Select Link Plots – Trip Distribution

 Source: Mesoscopic Model developed by Stantec/Council

The analysis of the Council's model-based trip distribution trends in all peak periods shows a typical trip distribution from travel zone number 1215. **Figure 23** shows the typical trip distribution trends noting the following key points:

- **Two-thirdsrd** of the IN trips come from the south, with **50%** of those trips turning left on Howatt Street and **50%** on Villawood Road
- Around 60% of OUT trips turn right on Woodville Road, travelling south

Figure 23Typical Trip Distribution Trend

It is important to note that the Council's mesoscopic model doesn't include the following critical points related to Kamira Court Precinct:

- Howatt Street extension to the west and connection with Kamira Court and Kamira Avenue
- Access points of three buildings planned as part of the Kamira Court Precinct

The above points are expected to influence the distribution of trips generated by the developments in the Kamira Court Precinct. Therefore, Traffwise has considered these points in the adopted trip distribution for all three buildings in Kamira Court Precinct.

5.5 Key Intersection Demand Flow – Mesoscopic Model-Based

Figure 24 to Figure 31 show the provided traffic flow demand at the following key intersections:

- Woodville Road/Kirrang Avenue
- Woodville Road/Howatt Street/Binna Burra Street
- Villawood Road/Villawood Place
- Woodville Road / Villawood Road / Llewellyn Avenue
- The Horsley Drive/River Avenue

The below figures reflect the model-based demand flow of cars and trucks (*heavy vehicles*) in the AM and PM peak periods, **7:15** am – **8:15** am and **3:15** pm – **4:15** pm, respectively.

 Figure 24
 2020 AM Peak – Demand Flow at Key Intersections (Cars)

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 25
 2020 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)

 Source: Mesoscopic Model developed by Stantec/Council

Figure 26 2031 AM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

 Figure 27
 2031 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 28
 2020 PM Peak – Demand Flow at Key Intersections (Cars)

 Source: Mesoscopic Model developed by Stantec/Council

 Figure 29
 2020 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)

 Source: Mesoscopic Model developed by Stantec/Council

Figure 30 2031 PM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

 Figure 31
 2031 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)

 Source: Mesoscopic Model developed by Stantec/Council

5.6 **Adopted Phasing**

Figure 32 to Figure 35 show the adopted phasing for key intersections that are signalised. The phase and cycle time details were provided by Council's traffic consultant (Stantec).

Figure 32

Adopted Cycle and Phase Time – Woodville Road / Kirrang Avenue

Source: Stantec

Figure 33 Source: Stantec

AM Peak в С Δ Phase Diagram Cycle Time (s) 140 Phase Time (s) 110 12 18 PM Peak С Α В Phase Diagram Cycle Time (s) 140 106 Phase Time (s) 12 22

Figure 34 Source: Stantec

Adopted Cycle and Phase Time – Woodville Road / Binna Nurra Street

Figure 35Adopted Cycle and Phase Time – River Avenue and The Horsely DriveSource: Stantec

- -

5.7 Intersection Performance Criteria

. . .

The intersection performance criteria are based on the RMS Traffic Modelling Guidelines (2013). The capacity of the controlling intersections can largely determine the capacity of a road network. The key indicator of intersection performance Level of Service (LoS) is a delay, where results are placed on a continuum from 'A' to 'F', as summarised in **Table 13**.

RIVIS Level of Servic	ce Criteria
LoS	Control delay per vehicle in seconds (d) (including geometric delay)
	All intersection types
А	d < 14
В	d < 15 to 28
С	d < 29 to 42
D	d < 43 to 56
E	d ≤ 57 to 70
F	d > 70

Source: RMS Traffic Modelling Guidelines (2013)

Table 13

RMS Traffic Modelling Guidelines (2013) also state that the average movement delay and level of service overall movements should be taken for traffic signals. For roundabouts and priority control signals intersection (with Stop and Give Way signs or operating under the T-junction rule), the critical movement for the level of service assessment should be that with the worst movement delay.

5.8 Potential Traffic Impacts

As per the SIDRA modelling results, the proposed Stage 2 development is not expected to significantly impact the network performance, and key intersections are expected to operate at a similar level with and without the proposed development traffic.

The following sections describe the performance level of individual intersections in a network context:

5.8.1 Woodville Road and Villawood Road, and Llewellyn Avenue

AM Peak:

• The results indicate that the intersection is expected to operate at almost the same LoS of B in all scenarios.

PM Peak:

- In the 2020 PM peak scenario, the intersection is expected to operate the same LoS of "C" with a minimal increase in delay and degree of saturation.
- In the 2031 PM peak, the results indicate that the average delay will increase with development traffic. However, it is important to note that:
 - The LoS on Woodville Road approaches will remain at an acceptable level of "C" with a minimal increase in delay and degree of saturation.
 - The average queuing of vehicles on Woodville Road remains the same (i.e., 40.4 vehicles) in with and without development traffic scenarios.
 - The factor resulting in the increased delay of overall intersection is right to turn movement from Villawood Road, which has LoS "F" in both with and without development scenarios. Therefore, this will occur regardless of the development traffic, and minor changes in phrasing may improve the LoS for the right turning traffic from Villawood Road as well.

Site (Network Analysis) Performance - Hourly Values									
Network ID	Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Dei (Wr. Mv.)	Del (Ctrl)	LOS	Back Que	Back Que
			veh/h		sec	sec		veh	m
Site Category: 20	020 AM Peak Withou	ut Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4031	0.778	81.3	15.0	LOS B	25.7	196.9
Site Category: 20	020 AM Peak With D	Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4189	0.844	88.0	14.7	LOS B	25.7	196.9
Site Category: 20	31 AM Peak Withou	ut Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4235	0.895	81.9	20.1	LOS B	38.8	299.5
Site Category: 20	031 AM Peak With D	Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4394	0.917	94.3	21.3	LOS B	38.8	299.5
Site Category: 20	020 PM Peak Witho	ut Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4272	0.902	83.9	30.7	LOS C	30.9	231.9
Site Category: 20	020 PM Peak With D	Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4492	0.947	95.8	38.2	LOS C	32.6	244.9
Site Category: 20	031 PM Peak Witho	ut Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4803	1.917	875.8	66.3	LOS E	40.4	313.3
Site Category: 20	031 PM Peak With D	Dev							
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	5012	2.456	1352.6	91.2	LOS F	40.4	313.3

5.8.2 Woodville Road and Howatt Street, and Binna Burra Street

AM Peak:

• The results indicate that the intersection is expected to operate at almost the same LoS "A" in all scenarios.

PM Peak:

- The intersection is expected to operate at an unsatisfactory LoS "F" in all PM peak scenarios even without the development traffic.
- The proposed development traffic will have minimal impact on delay and degree of saturation, as indicated in the results.

Traffic Impact Assessment – Stage 2 (Building A + C) Kamira Avenue, Villawood NSW 2163

Site (Network A	nalysis) Performan	nce - Hourly Values							
Network ID	Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Wr. Mv.)	Del (Ctrl)	LOS	Back Que	Back Que
Site Category: 20	20 AM Reak Without F	Dev	ven/h		sec	Sec		ven	m
Sile Calegory. 20.	20 AIVI PEAK WILIIOUL L	West ills Deed and Llowett Obset and Dises Dure	0045	0.000	00.7		100.4	05.0	004 7
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3815	0.869	83.7	11.4	LOSA	35.0	261.7
Site Category: 20	20 AM Peak With Dev								
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3874	0.792	83.7	8.4	LOS A	25.9	193.6
Site Category: 20	31 AM Peak Without D)ev							
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4038	0.724	85.2	8.9	LOS A	22.6	167.2
Site Category: 20	31 AM Peak With Dev								
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4080	0.730	85.2	8.7	LOS A	20.7	153.5
Site Category: 20	20 PM Peak Without D)ev							
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3777	1.225	271.6	119.6	LOS F	36.1	270.0
Site Category: 20	20 PM Peak With Dev								
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3863	1.245	288.6	128.0	LOS F	36.2	270.0
Site Category: 20	31 PM Peak Without D)ev							
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4202	1.341	373.7	163.3	LOS F	35.7	270.0
Site Category: 20	31 PM Peak With Dev								
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4288	1.361	392.6	173.8	LOS F	35.8	270.0

5.8.3 Woodville Road and Kirrang Avenue AM and PM Peak:

The results indicate that the intersection is expected to operate at a satisfactory level of "B" or better in all AM and PM peak periods scenarios. It is evident that the proposed development traffic is not expected to have any material impact on the performance level in existing and future years.

Site (Network A	Analysis) Perfor	mance - Hourly Values							
Network ID	Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Wr. Mv.)	Del (Ctri)	LOS	Back Que	Back Que
			veh/h		sec	sec		veh	m
Site Category: 20	20 AM Peak Witho	but Dev							
N101	103	Woodville Road and Kirrang Avenue	3905	0.901	85.0	10.8	LOS A	21.1	157.6
Site Category: 20	20 AM Peak With	Dev							
N101	103	Woodville Road and Kirrang Avenue	4088	0.884	77.9	13.1	LOS A	22.2	166.0
Site Category: 20	31 AM Peak Witho	but Dev							
N101	103	Woodville Road and Kirrang Avenue	4072	0.886	81.2	9.2	LOS A	13.5	100.1
Site Category: 20	31 AM Peak With	Dev							
N101	103	Woodville Road and Kirrang Avenue	4253	0.904	80.5	13.2	LOS A	16.6	122.8
Site Category: 20	20 PM Peak With	but Dev							
N101	103	Woodville Road and Kirrang Avenue	3661	0.802	68.5	6.9	LOS A	8.0	60.0
Site Category: 20	20 PM Peak With	Dev							
N101	103	Woodville Road and Kirrang Avenue	3940	0.882	81.4	14.2	LOS A	12.1	90.6
Site Category: 20	31 PM Peak With	put Dev							
N101	103	Woodville Road and Kirrang Avenue	4025	0.879	69.0	12.9	LOS A	29.5	224.0
Site Category: 20	31 PM Peak With	Dev							
N101	103	Woodville Road and Kirrang Avenue	4304	0.959	96.7	26.5	LOS B	33.7	255.7

5.8.4 The Horsley Drive and River Avenue AM and PM Peak:

The results indicate that the intersection is expected to operate at a satisfactory level of "B" in all scenarios of AM and PM peak periods.

Site Per	formance - Hourly Values							
Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Wr. Mv.)	Del (Ctri)	LOS	Back Que	Back Que
	_	veh/h		sec	sec		veh	m
Site Cate	egory: 2020 AM Peak Without Dev							
104	The Horsley Drive and River Avenue	3354	0.643	46.8	18.4	LOS B	14.0	112.7
Site Cate	egory: 2020 AM Peak With Dev							
104	The Horsley Drive and River Avenue	3361	0.643	46.8	18.4	LOS B	14.0	113.0
Site Cate	egory: 2031 AM Peak Without Dev							
104	The Horsley Drive and River Avenue	3552	0.745	49.1	20.6	LOS B	19.1	152.3
Site Cate	egory: 2031 AM Peak With Dev							
104	The Horsley Drive and River Avenue	3556	0.747	49.1	20.6	LOS B	19.2	152.9
Site Cate	egory: 2020 PM Peak Without Dev							
104	The Horsley Drive and River Avenue	3596	0.642	40.5	25.0	LOS B	18.7	139.9
Site Cate	egory: 2020 PM Peak With Dev							
104	The Horsley Drive and River Avenue	3607	0.650	41.4	24.8	LOS B	18.9	138.5
Site Cate	egory: 2031 PM Peak Without Dev							
104	The Horsley Drive and River Avenue	4017	0.728	44.5	25.8	LOS B	25.6	201.1
Site Cate	egory: 2031 PM Peak With Dev							
104	The Horsley Drive and River Avenue	4025	0.728	44.5	25.8	LOS B	26.0	203.8
104	The Horsley Drive and River Avenue	4025	0.728	44.5	25.8	LOS B	26.0	

5.8.5 Villawood Road and Villawood Place AM and PM Peak:

The results indicate that the proposed development is not expected to have a significant material impact on the performance level of this intersection.

Site Per	formance - Hourly Values							
Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Wr. Mv.)	Dei (Ctrl)	LOS	Back Que	Back Que
		veh/h		sec	sec		veh	m
Site Cate	egory: 2020 AM Peak Without Dev							
105	Villawood Road and Villawood Place	145	0.027	5.1	2.1	NA	0.1	0.9
Site Cate	egory: 2020 AM Peak With Dev							
105	Villawood Road and Villawood Place	305	0.052	6.3	1.2	NA	0.2	1.3
Site Cate	egory: 2031 AM Peak Without Dev							
105	Villawood Road and Villawood Place	179	0.038	5.2	2.6	NA	0.2	1.5
Site Cate	egory: 2031 AM Peak With Dev							
105	Villawood Road and Villawood Place	302	0.061	6.0	1.8	NA	0.3	2.1
Site Cate	egory: 2020 PM Peak Without Dev							
105	Villawood Road and Villawood Place	563	0.214	7.5	2.4	NA	1.2	8.9
Site Cate	egory: 2020 PM Peak With Dev							
105	Villawood Road and Villawood Place	782	0.283	10.6	2.5	NA	1.8	12.8
Site Cate	egory: 2031 PM Peak Without Dev							
105	Villawood Road and Villawood Place	711	0.285	9.0	2.9	NA	1.9	13.2
Site Cate	egory: 2031 PM Peak With Dev							
105	Villawood Road and Villawood Place	929	0.364	12.9	3.4	NA	3.1	22.0

Detailed Movement Summary results for each intersection under every scenario have been provided in Appendix C.

5.9 Public Transport Provisions

As described in **Section 2.5**, the proposed development site and the broader Villawood Town Centre is well serviced by the existing train and bus services providing access to Fairfield City Centre and other larger service and employment centres such as Liverpool, Parramatta CBD and the Sydney CBD.

The Villawood train station and the nearest bus stop on Villawood Place are located within 500 metres of walking distance with an average walking time of five minutes.

Please see Section 2.5 for details regarding existing train services and bus routes.

The development will actively encourage alternate modes of transport to vehicles through the use of building signage and interior sign-board postings. Further, the created amenities in the retail, supermarket, and childcare, within Stage 2 will promote a walkable and accessible community for those residents of the project.

5.10 Proposed Access Arrangements

As per the provided plans, all vehicular access to parking areas and loading zones have been proposed along the northern boundary on Villawood Road. **Figure 36** shows the location of the proposed access point on Villawood Road.

 Figure 36
 Proposed Access Points – Villawood Road

 Source: DKO Architecture
 Proposed Access Points – Villawood Road

5.11 Accessibility of Service Vehicle

Two separate loading zones have been proposed with turntables for Building A and C. The loading vehicles will access the loading zones from Villawood Road, as shown in **Figure 36**.

As per the provided information, HRV and MRV size trucks will use Building A and Building C loading zones, respectively.

6. Parking Assessment

6.1 Statutory Parking Requirements

6.1.1 Car Parking Requirements

As per the NSW Department of Planning and Environment's Apartment Design Guide July 2015,

• If the development is within 800 metres of a railway station or light rail stop in the Sydney Metropolitan Area, the minimum residents and visitors car parking rates specified in either RMS Guide to Traffic Generating Developments or the car parking requirement prescribed by the relevant Council can be used, whichever is less.

Noting that the proposed development site is located within 500 metres of the Villawood Train Station, the lessor residents and visitors parking rates specified in **Section 5.4.3** of the RMS Guide to Traffic Generating Developments (2002) were applicable. The RMS Guide's minimum parking rates for High-density residential flat buildings are:

- 0.4 spaces per 1-bedroom unit.
- 0.7 spaces per 2-bedroom unit.
- 1.2 spaces per 3-bedroom unit.
- 1 space per 7 units (visitor parking).

6.1.2 Car Parking Requirements – Non-Residential Component

As per the provided information, parking rates specified in Fairfield Citywide Development Control Plan have been adopted for Supermarket, Retail and Medical centre.

Whereas parking rates specified in NSW Child Care Planning Guideline (2017) have been adopted for the proposed Child Care Centre.

6.1.3 Car Parking Requirements – Bicycle and Motorcycles

The RMS Guide to Traffic Generating Developments (2002) and Fairfield Citywide Development Control Plan (DCP) do not provide bicycle and motorcycle parking rates for high-density residential development and other proposed land uses.

However, the architect has proposed bays for motorcycles and bicycles in both Buildings (A and C).

6.2 Parking Adequacy Review

As per the provided information,

 Table 14 summarises the proposed parking provisions for the Stage 2 (Building A + C) development.

It is evident from Table 14 and provided plans in Appendix A that:

- For the residential component in Building A, a total of 116 and 23 bays are required for residents and visitors, respectively. It is noted that:
 - o 57 bays (incl. 03 accessible/adaptable) for residents are proposed in the basement
 - o 45 residents (incl. 08 accessible/adaptable) and 23 visitors bays are proposed at Level 1
 - o 75 residents (including 07 accessible/adaptable) are proposed at Level 2
 - \circ $\,$ 10 motorcycle and 23 bicycle parking bays are proposed for Building A $\,$

- For non-residential components (*supermarket and Retail*) in Building A and the proposed medical centre in Building C, a total of 71 bays are required. It is noted that:
 - 114 bays (*incl. 07 accessible/adaptable*) are proposed in basement for above non-residential component
- For the residential components in Building C, a total of 49 and 09 bays are required for residents and visitors, respectively. It is noted that:
 - o 24 residents (incl. 03 accessible/adaptable) and 08 visitors bays are proposed at Level 1
 - o 36 residents (including 02 accessible/adaptable) are proposed at Level 2
 - \circ $\,$ 05 motorcycle and 10 bicycle parking bays are proposed for Building C $\,$
- For the proposed Childcare centre in Building C, a total of 17 bays are required. It is noted that:
 - 18 bays *(incl. 02 accessible/adaptable)* are proposed in the basement for the above non-residential component

RMS Car Parking Ra	ate - Building C				
Туре	Unit/Area	RMS Rate	Required	Proposed	
1 Bed	4	0.4	2	Basement 1	
2 Bed	50	0.7	35	Ground Floor	0
3 Bed	10	1.2	12	Level 1	32
Vistor		1/7 unit	9	Level 2	36
Total			58	Total	68
RMS Car Parking Ra	ate - Building A				
Туре	Unit/Area	RMS Rate	Required	Proposed	
1 Bed	24	0.4	10	Basement 1	57
2 Bed	108	0.7	76	Ground Floor	0
3 Bed	26	1.2	31.2	Level 1	68
Vistor		1/7 unit	23	Level 2	75
Total			139	Total	200
TOTAL RESIDENTIAL			197		268
DCP Car Parking Ra	te - Commercial/Ret	tail/Office			
Туре	Area (m2)	DCP Rate	Required	Proposed	
Supermarket	1188	1/40 m2	30	Basement 1	
Retail	1263	1/40 m2	32	Basement 1	114
Medical	254	1/25 m2	10.16	Basement 1	
Total			71	Total	114
Childcare Guideline	as Parking Rate - Chil	deare			
	No. of Kids	Childcare Guideline Rate	Required	Proposed	
Childcare	120	1/10 kids + 5 Staff	17	Basement 1	18
Total			17	Total	18
TOTAL COMMERCIAL	L/RETAIL/OFFICE		88		132
	0.150.4.1		205		400
TOTAL CAR PARKING OVERALL 285 400					

Table 14Proposed Car Parking Provisions

Considering the above points and details provided in **Table 14**, the proposed parking provisions are adequate and, in general, comply with the statutory requirements described in **Section 6.1**.

6.3 Parking Layout Review

The following points have been noted from the parking area plans designed by the architect and provided information:

- All 90° angle parking spaces for residential components have a minimum dimension of 5.4 m × 2.4 m with a minimum aisle width of 5.8 m, complying with Section 2.4.1 of the AS/NZS 2890.1:2004.
- All 90° angle parking spaces for non-residential components have a minimum dimension of 5.4 m
 × 2.6 m with a minimum aisle width of 6.2 m, complying with Section 2.4.1 of the AS/NZS 2890.1:2004.
- Few 90° disabled parking spaces have a minimum dimension of 5.4 m × 2.4 m and an adjoining shared space of the same dimension complying with Section 2.2.1 of the AS/NZS 2890.6:2009.
- Few 90° adaptable parking bay with dimension of 5.5m long × 3.8m wide (in total), in accordance with AS 4299—1995.
- All proposed ramps have a minimum width of 5.5 m, complying with Section 2.5.2 of the AS/NZS 2890.1:2004.
- As per the provided info by the Client, gradients on all ramps will be reviewed as part of the detailed design and ground clearance checks will be carried out as well.
- All bicycle parking spaces in the basement have dimensions of 2 m × 0.5 m.
- The architect has confirmed that the general ceiling height throughout the car parking area, including the parking spaces, complies with Section 2.4 of the AS/NZS 2890.6:2009.
- Traffic safety convex mirrors will be proposed at different locations to ensure safe movements within the parking area, including ramps.
- The plans designed by the architect indicate that at any time, only one vehicle would be able to circulate on Level 1 and Level 2 because of proposed sharp turns. However, considering it is residential parking, it is envisaged that most of the vehicles would be travelling in one direction in peak times. Thus, reducing the likelihood of two cars travelling in the opposite direction.

7. Findings

Traffwise Consultants Pty Ltd has been engaged by Traders in Purple to undertake a Traffic Impact Assessment study for the proposed Stage 2 *(Building A + C)*, a mixed-use development. The proposed development is part of the Kamira Court Precinct and is in line with the Urban Framework Plan for Villawood Town Centre.

Based on the assessment and discussions presented within this report, the following key points are noted:

- The project site is located at the southwest corner of the Villawood Road and Kamira Court intersection. This parcel of the land is of the Kamira Court Residential Precinct, owned by Land and Housing Corporation.
- The broader area of the Villawood Town Centre *(including the project site)* is well serviced by train and bus services providing access to Fairfield City Centre and other larger service and employment centres such as Liverpool, Parramatta CBD and the Sydney CBD.
- The project site is located within 500 metres of walking distance to the Villawood Station and the nearest bus stop on Villawood Place.
- The proposed Stage 2 (*Building A + C*) development includes 222 high-density residential units, a supermarket, retail, medical centre and a childcare facility.
- The proposed land use mix as part of Stage 2 development is expected to generate 284 and 406 trips in the AM and PM peak, respectively.
- Considering the SIDRA modelling results, the proposed Stage 2 development is not expected to significantly impact the network performance, and key intersections are expected to operate at a similar level with and without the proposed development traffic.
- A total of 268 car parking bays are proposed for the residential component and 132 for the non-residential component.
- The main access point for vehicles, including service vehicles, is proposed along the northern boundary on Villawood Road. However, the pedestrian would be able to access the development from all sides.
- Dimension of parking bays and aisle width generally complies with Australian Standards.

Appendix A

DEVELOPMENT PLANS

Notes ALL WORKS TO BE IN ACCORDANCE WITH AUTHORITY & STATUTORY APPROVALS. ALL BOUNDARY INFORMATION TO BE CONFIRMED BY REGISTERED SURVEYOR BEFORE COMMENCING WORKS ON SITE.

REFER TO SITE SURVEY FOR ALL INFORMATION RELATING TO EXISTING SITE CONDITIONS. REFER TO LANDSCAPE ARCHITECT'S DOCUMENTATION & ARBORIST REPORTS FOR ALL INFORMATION RELATING TO TREES AND THEIR RETENTION/REMOVAL AND NEW LANDSCAPE WORKS.

© DKO Architecture (NSW) Pty Ltd Except as allowed under copyright act, no part of this drawing may be reproduced or otherwise dealt with without written permission of DKO Architecture.

Consultants

Land Survey - SDG Land Development Services Craig Turner ct@sdg.net.au 02 9630 7955 / 0422 200 574

Civil/Stormwater - MRC Mark Harrison mark.harrison@mrceng.com.au 0401 071 353

Planner - Think Planners Schandel Fortu schandel@thinkplanners.com.au 02 9687 8899

Waste Management - Dickens Solutions Garry Dickens garry@dickenssolutions.com.au 0400 388 996

Parking Space

Childcare 18 car spaces 2 Accessible (incl.)

6,300

02 DA300

Retail, Medical & Supermarket 114 car spaces, 4 MB spaces 7 Accessible (incl.)

Residential

57 car spaces, 1 MB space 5 Tandem (incl.) 2 Accessible (incl.) 1 Adaptable (incl.)

Project Name Project Address \bigcirc Client

Villawood Stage 2 & 3 | Project Number 2 Kamira Ave, Drawing Villawood, NSW 2163 Scale

Drawing Name Date

Revision

DRAFT - FOR REVIEW 00012870

Basement Plan 1:250@A1 February 2022

Traders in Purple

Drawing Number DA200 Α

							- · · ·
			Rev	Date	Ву	Chk	Description
e Design - Landform	BCA - Building Innovations	Traffic - Traffwise	06	22/02/2022	TM MW	SO	Issued to Consultant
harlie Robinson form-studios.com •landform-studios.com	Mardiros Tatian mardiros@bcainnovations.com.au 0450 278 007	Ali Raza araza@traffwise.com.au 0412 147 299	07	5/03/2022	TM MW	SO	Issued to client for sign off
04			08	9/03/2022	TM MW	SO	Issued to Traffic and Landscape
al, Hydraulic,Fire & BASIX - Greenview an nview.net.au	Building Surveyor - Master Surveying David Jollie david.jollie@masterssurveying.com.au		A - WIP	Work in Progress	TM MW	SO	Issued for Draft DA Set

Appendix **B**

SWEPT PATHASSESSMENT

(Not for Construction)

Level 2 – Building A - Swept Path Check of Few Bays

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Level 2 – Building C - Swept Path Check of Few Bays

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Level 1 – Building A and C - Swept Path Check for Circulation (B99)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Level 1 – Building A - Swept Path Check for Few Bays (B85)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Level 1 – Building C - Swept Path Check for Few Bays (B85)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Basement – Swept Path Check for Few Bays (B85 and B99)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Basement - Swept Path Check for Circulation (B99)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Ground Floor - Swept Path Check for Entry to Loading Zone (HRV)

- Not For Construction
- Based on drawings provided by the Architect
- Autoturn Tool was used to carryout swept paths
- 300mm body clearance envelope was adopted
- The swept path drawings have been provided to Architect for info regarding minor changes required

Appendix C

SIDRA MODELLING RESULTS

PROJECT SUMMARY FOR NETWORK SITES

Project: Modelling of Intersections - Copy

Project Summary for selected Sites (Network Analysis).

Site (Network Analysis) Performance - Hourly Values											
Network ID	Site ID	Site Name	Dem. Flow (Tot) veh/h	Deg of Satn	Del (Wr. Mv.) sec	Del (Ctrl) sec	LOS	Back Que veh	Back Que m		
Site Cate	gory: 2020	AM Peak Without Dev									
N101	103	Woodville Road and Kirrang Avenue	3905	0.901	85.0	10.8	LOS A	21.1	157.6		
N101	105	Villawood Road and Villawood Place	145	0.027	5.1	2.1	NA	0.0	0.3		
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4031	0.778	81.3	15.0	LOS B	25.7	196.9		
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3815	0.869	83.7	11.4	LOS A	35.0	261.7		
Site Cate	gory: 2020	AM Peak With Dev									
N101	103	Woodville Road and Kirrang Avenue	4088	0.884	77.9	13.1	LOS A	22.2	166.0		
N101	105	Villawood Road and Villawood Place	305	0.052	6.3	1.2	NA	0.1	0.4		
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4189	0.844	88.0	14.7	LOS B	25.7	196.9		
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3874	0.792	83.7	8.4	LOS A	25.9	193.6		
Site Cate	gory: 2031	AM Peak Without Dev									
N101	103	Woodville Road and Kirrang Avenue	4072	0.886	81.2	9.2	LOS A	13.5	100.1		
N101	105	Villawood Road and Villawood Place	179	0.038	5.2	2.5	NA	0.1	0.5		
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4235	0.895	81.9	20.1	LOS B	38.8	299.5		
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4038	0.724	85.2	8.9	LOS A	22.6	167.2		
Site Cate	gory: 2031	AM Peak With Dev									
N101	103	Woodville Road and Kirrang Avenue	4253	0.904	80.5	13.2	LOS A	16.6	122.8		
N101	105	Villawood Road and Villawood Place	302	0.061	6.0	1.8	NA	0.1	0.7		
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4394	0.917	94.3	21.3	LOS B	38.8	299.5		
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4080	0.730	85.2	8.7	LOS A	20.7	153.5		
Site Cate	gory: 2020	PM Peak Without Dev									
N101	103	Woodville Road and Kirrang Avenue	3661	0.802	68.5	6.9	LOS A	8.0	60.0		
N101	105	Villawood Road and Villawood Place	563	0.212	6.8	2.4	NA	0.4	3.0		
N101	101	Woodville Road and Villawood Road and	4272	0.902	83.9	30.7	LOS C	30.9	231.9		

		Llewellyn Avenue							
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3777	1.225	271.6	119.6	LOS F	36.1	270.0
Site Cate	gory: 2020	PM Peak With Dev							
N101	103	Woodville Road and Kirrang Avenue	3940	0.882	81.4	14.2	LOS A	12.1	90.6
N101	105	Villawood Road and Villawood Place	782	0.280	9.1	2.5	NA	0.6	4.4
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4492	0.947	95.8	38.2	LOS C	32.6	244.9
N101	102	Woodville Road and Howatt Street and Binna Burra Street	3863	1.245	288.6	128.0	LOS F	36.2	270.0
Site Cate	gory: 2031	PM Peak Without Dev							
N101	103	Woodville Road and Kirrang Avenue	4025	0.879	69.0	12.9	LOS A	29.5	224.0
N101	105	Villawood Road and Villawood Place	711	0.278	7.8	2.9	NA	4.8	34.4
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	4803	1.917	875.8	66.3	LOS E	40.4	313.3
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4202	1.341	373.7	163.3	LOS F	35.7	270.0
Site Cate	gory: 2031	PM Peak With Dev							
N101	103	Woodville Road and Kirrang Avenue	4304	0.959	96.7	26.5	LOS B	33.7	255.7
N101	105	Villawood Road and Villawood Place	929	0.346	10.4	3.2	NA	12.4	87.5
N101	101	Woodville Road and Villawood Road and Llewellyn Avenue	5012	2.456	1352.6	91.2	LOS F	40.4	313.3
N101	102	Woodville Road and Howatt Street and Binna Burra Street	4288	1.361	392.6	173.8	LOS F	35.8	270.0

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:00:32 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

■ Network: 1 [2020 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2020 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Input Phase Sequence

Movement Class: All Movement Classes

REF: Reference Phase

Vehic	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF ([Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Woodville Road														
30 31	L2 T1	20 2037	0.0 7.9	20 2037	0.0 7.9	0.369 * 0.836	10.0 11.0	LOS A LOS A	6.3 21.1	46.7 157.6	0.32 0.58	0.30 0.56	0.32 0.60	49.7 42.7
Appro	ach	2057	7.8	2057	7.8	0.836	11.0	LOS A	21.1	157.6	0.58	0.56	0.59	42.8
North: Woodville Road														
25 26	T1 R2	1644 7	11.3 14.3	1644 7	11.3 14.3	0.420 0.420	2.4 9.7	LOS A LOS A	3.6 3.6	27.8 27.8	0.14 0.20	0.13 0.19	0.14 0.20	56.7 48.5
Appro	ach	1652	11.3	1652	11.3	0.420	2.4	LOS A	3.6	27.8	0.14	0.13	0.14	56.6
West:	Kirran	g Avenue												
27 29	L2 R2	17 180	0.0 8.8	17 180	0.0 8.8	0.010 * 0.901	9.1 85.0	LOS A LOS F	0.0 8.6	0.2 64.7	0.09 1.00	0.55 0.99	0.09 1.37	44.1 22.2
Appro	ach	197	8.0	197	8.0	0.901	78.5	LOS F	8.6	64.7	0.92	0.95	1.26	22.8
All Ve	hicles	3905	9.3	3905	9.3	0.901	10.8	LOS A	21.1	157.6	0.41	0.40	0.44	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance												
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.		
ID Crossing	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed		
				[Ped	Dist]		Rate					
	ped/h	sec		ped	m			sec	m	m/sec		
South: Woodville	Road											
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94		
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 AM Peak Without Dev Give-Way (Two-Way)

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Vehio	Vehicle Movement Performance													
Mov	Turn	DEMA		ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
ט ו		FLO\ [Total	иS НV1	FLU Tota	1HV1	Sath	Delay	Service	UF (JUEUE Dist 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	· %	v/c	sec		veh	m		r tato		km/h
South	: Villaw	ood Plac	e											
1	L2	1	0.0	1	0.0	0.001	4.6	LOS A	0.0	0.0	0.08	0.50	0.08	45.3
2	T1	1	0.0	1	0.0	0.012	4.3	LOS A	0.0	0.1	0.21	0.51	0.21	40.7
3	R2	17	0.0	17	0.0	0.012	4.9	LOS A	0.0	0.1	0.21	0.51	0.21	38.4
Appro	bach	19	0.0	19	0.0	0.012	4.8	LOS A	0.0	0.1	0.20	0.51	0.20	39.4
East:	Villawo	od Road												
4	L2	4	0.0	4	0.0	0.027	5.1	LOS A	0.0	0.3	0.10	0.19	0.10	44.2
5	T1	24	21.7	24	21.7	0.027	0.3	LOS A	0.0	0.3	0.10	0.19	0.10	47.4
6	R2	9	0.0	9	0.0	0.027	5.1	LOS A	0.0	0.3	0.10	0.19	0.10	40.5
Appro	bach	38	13.9	38	13.9	0.027	2.0	NA	0.0	0.3	0.10	0.19	0.10	46.4
North	: Villaw	ood Plac	е											
7	L2	22	0.0	22	0.0	0.018	4.8	LOS A	0.0	0.2	0.14	0.50	0.14	29.6
8	T1	1	0.0	1	0.0	0.002	4.2	LOS A	0.0	0.0	0.21	0.45	0.21	41.2
9	R2	1	0.0	1	0.0	0.002	4.8	LOS A	0.0	0.0	0.21	0.45	0.21	44.4
Appro	bach	24	0.0	24	0.0	0.018	4.8	LOS A	0.0	0.2	0.15	0.49	0.15	32.7
West:	Villawo	ood Road	ł											
10	L2	2	0.0	2	0.0	0.017	4.6	LOS A	0.0	0.0	0.00	0.04	0.00	48.8
11	T1	61	12.1	61	12.1	0.017	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	49.8
12	R2	1	0.0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.12	0.50	0.12	44.9
Appro	bach	64	11.5	64	11.5	0.017	0.2	NA	0.0	0.0	0.00	0.03	0.00	49.6
All Ve	hicles	145	8.7	145	8.7	0.027	2.1	NA	0.0	0.3	0.08	0.21	0.08	46.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Network: 1 [2020 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, C, D, E Output Phase Sequence: A, C, D, E

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Input Phase Sequence

Movement Class: All Movement Classes

Phase Transition Applied

Other Movement Class (MC) Stopped

Vehicle Movement Performance														
Mov Turn		DEMAND		ARRIVAL		Deg.	Aver.	Level of	AVERAGE BACK		Prop.	EffectiveAver. No.		Aver.
ID		FLO'	WS LIVI	FLO Total	WS	Satn	Delay	Service		QUEUE	Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		ven.	m		Nale		km/h
South	lville Roa	ad												
1	L2	13	0.0	13	0.0	*0.778	13.1	LOS A	17.5	130.7	0.47	0.43	0.47	36.5
31	T1	2016	8.0	2016	8.0	0.778	5.5	LOS A	17.5	130.7	0.36	0.34	0.36	53.3
32	R2	51	0.0	51	0.0	0.322	51.5	LOS D	1.7	12.1	1.00	0.74	1.00	23.9
Appro	ach	2079	7.7	2079	7.7	0.778	6.7	LOS A	17.5	130.7	0.38	0.35	0.38	51.9
East: Llewellyn Avenue														
21	L2	21	40.0	21	40.0	0.073	49.4	LOS D	0.8	7.4	0.81	0.67	0.81	20.0
5	T1	2	50.0	2	50.0	0.073	44.5	LOS D	0.8	7.4	0.81	0.67	0.81	20.0
23	R2	60	52.6	60	52.6	*0.451	69.8	LOS E	2.4	24.8	0.97	0.77	0.97	25.8
Appro	ach	83	49.4	83	49.4	0.451	64.0	LOS E	2.4	24.8	0.93	0.74	0.93	24.7
North: Woodville Road														
24	L2	136	12.4	136	12.4	0.768	24.9	LOS B	25.7	196.9	0.77	0.74	0.77	42.6
25	T1	1606	11.1	1606	11.1	*0.768	19.5	LOS B	25.7	196.9	0.78	0.73	0.78	37.7
9	R2	24	17.4	24	17.4	*0.347	81.3	LOS F	1.1	8.5	1.00	0.71	1.00	17.6
Appro	ach	1766	11.3	1766	11.3	0.768	20.7	LOS B	25.7	196.9	0.78	0.73	0.78	37.7
West: Villawood Road														
10	L2	40	15.8	40	15.8	0.026	4.9	LOS A	0.1	0.6	0.09	0.55	0.09	48.9
11	T1	4	0.0	4	0.0	0.019	59.1	LOS E	0.2	1.1	0.91	0.59	0.91	19.6
12	R2	58	3.6	58	3.6	0.433	73.8	LOS F	2.4	17.4	0.99	0.76	0.99	4.1
Approach		102	8.2	102	8.2	0.433	46.2	LOS D	2.4	17.4	0.64	0.67	0.64	17.0
All Ve	hicles	4031	10.2	4031	10.2	0.778	15.0	LOS B	25.7	196.9	0.57	0.53	0.57	43.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
| Pedestrian M | ovement | Perform | nance | | | | | | | |
|--------------------|---------|---------|----------|--------------------------------|---------|---------|--------------|--------|--------|-------|
| Mov
LD Crossing | Dem. | Aver. | Level of | AVERAGE | BACK OF | Prop. E | ffective | Travel | Travel | Aver. |
| ID Crossing | FIOW | Delay | Service | e QUEUE
[Ped Dist]
ped m | | Que | Stop
Rate | Time | Dist. | Speed |
| | ped/h | sec | | ped | m | | | sec | m | m/sec |
| South: Woodvill | le Road | | | | | | | | | |
| P8 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 232.5 | 218.8 | 0.94 |
| East: Llewellyn | Avenue | | | | | | | | | |
| P5 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 232.3 | 218.4 | 0.94 |
| West: Villawood | d Road | | | | | | | | | |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 232.1 | 218.1 | 0.94 |
| All Pedestrians | 158 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 232.3 | 218.4 | 0.94 |

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

■ Network: 1 [2020 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehic	le Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	ville Roa	d											
1	L2	21	0.0	21	0.0	0.869	25.1	LOS B	30.1	224.7	0.82	0.80	0.85	23.3
31	T1	2036	7.9	2036	7.9	*0.869	17.2	LOS B	35.0	261.7	0.82	0.78	0.83	29.8
Appro	ach	2057	7.8	2057	7.8	0.869	17.3	LOS B	35.0	261.7	0.82	0.78	0.83	29.6
East:	Binna B	Burra St												
21	L2	18	5.9	18	5.9	0.206	66.8	LOS E	1.5	11.4	0.95	0.72	0.95	3.5
5	T1	18	23.5	18	23.5	*0.206	63.0	LOS E	1.5	11.4	0.95	0.72	0.95	6.6
23	R2	40	2.6	40	2.6	0.206	66.7	LOS E	1.5	10.8	0.95	0.73	0.95	3.5
Appro	ach	76	8.3	76	8.3	0.206	65.8	LOS E	1.5	11.4	0.95	0.73	0.95	4.2
North:	Wood	ville Roa	d											
24	L2	36	8.8	36	8.8	0.389	6.5	LOS A	1.3	10.2	0.06	0.09	0.06	25.4
25	T1	1635	11.3	1635	11.3	0.389	1.1	LOS A	2.0	15.6	0.08	0.08	0.08	54.4
9	R2	12	100.0	12	100. 0	*0.253	83.7	LOS F	0.5	6.7	1.00	0.69	1.00	9.1
Appro	ach	1682	11.9	1682	11.9	0.389	1.8	LOS A	2.0	15.6	0.09	0.09	0.09	50.5
All Ve	hicles	3815	9.6	3815	9.6	0.869	11.4	LOS A	35.0	261.7	0.50	0.48	0.50	33.2

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movement	t Perfori	mance							
Mov	Dem.	Aver.	Level of	AVERAGE	E BACK OF	Prop. E	ffective	Travel	Travel	Aver.
D Clossing	Flow	Delay	Service	e QUEUE [Ped Dist] ped m		Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Wood	ville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
P8Full53East: Binna Burra St										
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howatt	Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestriar	ns 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:02:48 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

■ Network: 2 [2020 AM Peak With Dev (Network Folder: AM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2020 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
30 31	L2 T1	80 2055	0.0 7.8	80 2055	0.0 7.8	0.359 * 0.814	12.2 12.0	LOS A LOS A	6.9 22.2	50.7 166.0	0.38 0.65	0.40 0.62	0.38 0.65	47.6 41.0
Appro	ach	2135	7.5	2135	7.5	0.814	12.0	LOS A	22.2	166.0	0.64	0.61	0.64	41.4
North	North: Woodville Road													
25 26	T1 R2	1675 7	11.1 14.3	1675 7	11.1 14.3	0.455 0.455	4.6 12.7	LOS A LOS A	5.6 5.6	43.0 43.0	0.23 0.30	0.21 0.28	0.23 0.30	53.9 46.2
Appro	ach	1682	11.1	1682	11.1	0.455	4.6	LOS A	5.6	43.0	0.23	0.21	0.23	53.9
West:	Kirran	g Avenue												
27 29	L2 R2	17 255	0.0 6.2	17 255	0.0 6.2	0.010 * 0.884	8.6 77.9	LOS A LOS F	0.0 11.8	0.2 87.1	0.09 1.00	0.55 0.97	0.09 1.27	44.1 23.3
Appro	bach	272	5.8	272	5.8	0.884	73.6	LOS F	11.8	87.1	0.94	0.94	1.20	23.7
All Ve	hicles	4088	8.9	4088	8.9	0.884	13.1	LOS A	22.2	166.0	0.49	0.47	0.51	43.0

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance														
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.					
ID Crossing	Flow	Delay	Service	QUEUE		Que	Stop	Time	Dist.	Speed					
				[Ped	Dist]		Rate								
	ped/h	sec		ped	m			sec	m	m/sec					
South: Woodville Road															
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94					
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94					

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 AM Peak With Dev Give-Way (Two-Way)

Site Layout

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn			ARRI	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
ט ו		FLU\ [Total]	/vS і	FLU Total	VVS ГН\/ 1	Sath	Delay	Service		UEUE Diet 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		i tato		km/h
South	: Villaw	ood Plac	e											
1	L2	1	0.0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.15	0.48	0.15	45.0
2	T1	1	0.0	1	0.0	0.014	5.3	LOS A	0.0	0.2	0.33	0.54	0.33	40.1
3	R2	17	0.0	17	0.0	0.014	5.3	LOS A	0.0	0.2	0.33	0.54	0.33	37.6
Appro	bach	19	0.0	19	0.0	0.014	5.3	LOS A	0.0	0.2	0.32	0.53	0.32	38.7
East:	Villawo	od Road												
4	L2	4	0.0	4	0.0	0.052	6.1	LOS A	0.1	0.4	0.10	0.09	0.10	45.7
5	T1	71	7.5	71	7.5	0.052	0.5	LOS A	0.1	0.4	0.10	0.09	0.10	48.4
6	R2	9	0.0	9	0.0	0.052	6.3	LOS A	0.1	0.4	0.10	0.09	0.10	42.9
Appro	bach	84	6.3	84	6.3	0.052	1.4	NA	0.1	0.4	0.10	0.09	0.10	48.0
North	: Villaw	ood Plac	е											
7	L2	22	0.0	22	0.0	0.020	5.2	LOS A	0.0	0.2	0.26	0.52	0.26	28.5
8	T1	1	0.0	1	0.0	0.002	5.3	LOS A	0.0	0.0	0.35	0.47	0.35	40.3
9	R2	1	0.0	1	0.0	0.002	5.2	LOS A	0.0	0.0	0.35	0.47	0.35	43.8
Appro	bach	24	0.0	24	0.0	0.020	5.2	LOS A	0.0	0.2	0.27	0.51	0.27	31.7
West:	Villawo	ood Road	ł											
10	L2	2	0.0	2	0.0	0.047	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.0
11	T1	175	4.2	175	4.2	0.047	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	49.9
12	R2	1	0.0	1	0.0	0.001	5.0	LOS A	0.0	0.0	0.20	0.49	0.20	44.7
Appro	bach	178	4.1	178	4.1	0.047	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.8
All Ve	hicles	305	4.1	305	4.1	0.052	1.2	NA	0.1	0.4	0.07	0.10	0.07	48.2

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, C, D, E

Output Phase Sequence: A, C, D, E

Site Layout

Movement Class: All Movement Classes

Phase Transition Applied

Other Movement Class (MC) Stopped

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn	DEMA	AND	ARR	IVAL	Deg.	Aver.	Level of	AVERA	AGE BACK	Prop.	EffectiveA	ver. No.	Aver.
ID		FLO Totol	WS	FLO Total	WS	Satn	Delay	Service		QUEUE	Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	гпvј %	v/c	sec		veh	m m		Nale		km/h
South	: Wood	lville Roa	d											
1	L2	17	0.0	17	0.0	*0.780	6.8	LOS A	3.9	29.4	0.11	0.11	0.11	54.0
31	T1	2016	8.0	2016	8.0	0.780	2.4	LOS A	10.1	75.2	0.19	0.18	0.19	56.8
32	R2	51	0.0	51	0.0	0.322	51.5	LOS D	1.7	12.1	1.00	0.74	1.00	23.9
Appro	ach	2083	7.7	2083	7.7	0.780	3.6	LOS A	10.1	75.2	0.20	0.19	0.20	55.2
East:	Llewell	yn Avenı	le											
21	L2	21	40.0	21	40.0	0.086	51.9	LOS D	0.9	8.2	0.83	0.67	0.83	19.6
5	T1	4	25.0	4	25.0	0.086	46.9	LOS D	0.9	8.2	0.83	0.67	0.83	19.6
23	R2	60	52.6	60	52.6	*0.487	70.4	LOS E	2.5	25.0	0.98	0.77	0.98	25.7
Appro	ach	85	48.1	85	48.1	0.487	64.7	LOS E	2.5	25.0	0.93	0.74	0.93	24.5
North	: Wood	ville Roa	d											
24	L2	136	12.4	136	12.4	0.768	24.9	LOS B	25.7	196.9	0.77	0.74	0.77	42.6
25	T1	1606	11.1	1606	11.1	*0.768	19.5	LOS B	25.7	196.9	0.78	0.73	0.78	37.7
9	R2	63	6.7	63	6.7	*0.844	88.0	LOS F	3.0	21.9	1.00	0.90	1.40	16.6
Appro	ach	1805	11.0	1805	11.0	0.844	22.3	LOS B	25.7	196.9	0.79	0.74	0.80	36.7
West:	Villawo	ood Road	ł											
10	L2	115	5.5	115	5.5	0.070	4.9	LOS A	0.2	1.7	0.10	0.55	0.10	49.5
11	T1	9	0.0	9	0.0	0.042	59.6	LOS E	0.4	2.5	0.92	0.63	0.92	19.5
12	R2	92	2.3	92	2.3	0.682	76.6	LOS F	4.0	28.3	1.00	0.83	1.10	4.0
Appro	ach	216	3.9	216	3.9	0.682	37.7	LOS C	4.0	28.3	0.52	0.67	0.56	22.4
All Ve	hicles	4189	9.8	4189	9.8	0.844	14.7	LOS B	25.7	196.9	0.49	0.46	0.49	43.3

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	ovement	Perform	nance							
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	FIOW	Delay	Service	e QUEUE [Ped Dist] ped m		Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodvill	le Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94
East: Llewellyn	Avenue									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94
West: Villawood	d Road									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehic	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
1	L2	37	0.0	37	0.0	0.792	17.2	LOS B	25.6	191.2	0.66	0.63	0.66	27.3
31	T1	2039	7.8	2039	7.8	*0.792	11.6	LOS A	25.9	193.6	0.66	0.63	0.66	35.5
Appro	ach	2076	7.7	2076	7.7	0.792	11.7	LOS A	25.9	193.6	0.66	0.63	0.66	35.2
East:	Binna B	Burra St												
21	L2	18	5.9	18	5.9	0.213	66.8	LOS E	1.5	11.9	0.95	0.72	0.95	3.5
5	T1	19	22.2	19	22.2	*0.213	63.0	LOS E	1.5	11.9	0.95	0.72	0.95	6.6
23	R2	42	2.5	42	2.5	0.213	66.7	LOS E	1.6	11.2	0.95	0.73	0.95	3.4
Appro	ach	79	8.0	79	8.0	0.213	65.9	LOS E	1.6	11.9	0.95	0.73	0.95	4.3
North	Wood	ville Roa	d											
24	L2	41	7.7	41	7.7	0.397	6.5	LOS A	1.4	10.8	0.07	0.10	0.07	25.3
25	T1	1666	11.1	1666	11.1	0.397	1.0	LOS A	1.6	12.4	0.07	0.08	0.07	54.8
9	R2	12	100.0	12	100. 0	*0.253	83.7	LOS F	0.5	6.7	1.00	0.69	1.00	9.1
Appro	ach	1719	11.6	1719	11.6	0.397	1.7	LOS A	1.6	12.4	0.08	0.08	0.08	50.7
All Ve	hicles	3874	9.5	3874	9.5	0.792	8.4	LOS A	25.9	193.6	0.41	0.39	0.41	37.4

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Movement	t Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Clossi	ing Flow	Delay	Service	QUEUE [Ped Dist]		Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woo	odville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
East: Binna	a Burra St									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howa	att Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestri	ians 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:05:54 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 5 [2020 PM peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2020 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehic	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF QI [Veh. veh	E BACK JEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
30	L2	51	0.0	51	0.0	0.354	9.6	LOS A	3.9	28.9	0.30	0.31	0.30	49.7
31	T1	1625	8.4	1625	8.4	*0.802	9.5	LOS A	8.0	60.0	0.52	0.51	0.54	44.0
Appro	ach	1676	8.2	1676	8.2	0.802	9.5	LOS A	8.0	60.0	0.52	0.50	0.53	44.3
North	North: Woodville Road													
25	T1	1874	8.0	1874	8.0	0.434	1.5	LOS A	3.6	26.8	0.10	0.09	0.10	57.9
Appro	ach	1874	8.0	1874	8.0	0.434	1.5	LOS A	3.6	26.8	0.10	0.09	0.10	57.9
West:	Kirran	g Avenue												
27	L2	18	0.0	18	0.0	0.011	7.0	LOS A	0.2	1.1	0.09	0.55	0.09	44.1
29	R2	94	0.0	94	0.0	*0.448	68.5	LOS E	3.8	26.3	0.98	0.78	0.98	25.1
Appro	ach	112	0.0	112	0.0	0.448	58.6	LOS E	3.8	26.3	0.84	0.74	0.84	26.2
All Ve	hicles	3661	7.8	3661	7.8	0.802	6.9	LOS A	8.0	60.0	0.31	0.30	0.32	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance														
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.					
ID Crossing	Flow	Delay	Service	QUEUE		Que	Stop	Time	Dist.	Speed					
				[Ped	Dist]		Rate								
	ped/h	sec		ped	m			sec	m	m/sec					
South: Woodville Road															
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94					
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94					

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 PM Peak Without Dev Give-Way (Two-Way)

Site Layout

Vehicle Movement Performance														
Mov	Turn			ARRIVAL		Deg.	Aver.	Level of	AVERA	AVERAGE BACK		EffectiveA	ver. No.	Aver.
ט ו		FLO Total	иS H\/1	FLU Total	VVS HV/1	Sath	Delay	Service	UF ([\/eh	JUEUE Dist 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate		km/h
South: Villawood Place														
1	L2	1	0.0	1	0.0	0.001	5.3	LOS A	0.0	0.0	0.28	0.47	0.28	44.7
2	T1	1	0.0	1	0.0	0.032	6.8	LOS A	0.1	0.4	0.44	0.60	0.44	39.5
3	R2	34	0.0	34	0.0	0.032	6.1	LOS A	0.1	0.4	0.44	0.60	0.44	36.9
Appro	bach	36	0.0	36	0.0	0.032	6.1	LOS A	0.1	0.4	0.43	0.60	0.43	37.5
East: Villawood Road														
4	L2	33	0.0	32	0.0	0.212	6.4	LOS A	0.4	3.0	0.18	0.17	0.18	43.3
5	T1	204	2.6	203	2.6	0.212	1.0	LOS A	0.4	3.0	0.18	0.17	0.18	46.8
6	R2	65	0.0	65	0.0	0.212	6.6	LOS A	0.4	3.0	0.18	0.17	0.18	39.2
Appro	bach	302	1.7	<mark>300</mark> N1	1.8	0.212	2.8	NA	0.4	3.0	0.18	0.17	0.18	45.8
North: Villawood Place														
7	L2	49	0.0	49	0.0	0.043	5.2	LOS A	0.1	0.4	0.26	0.53	0.26	28.5
8	T1	1	0.0	1	0.0	0.003	6.8	LOS A	0.0	0.0	0.47	0.50	0.47	39.5
9	R2	1	0.0	1	0.0	0.003	5.8	LOS A	0.0	0.0	0.47	0.50	0.47	43.3
Appro	bach	52	0.0	52	0.0	0.043	5.3	LOS A	0.1	0.4	0.27	0.53	0.27	30.1
West: Villawood Road														
10	L2	2	0.0	2	0.0	0.045	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.0
11	T1	171	3.1	171	3.1	0.045	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	49.9
12	R2	1	0.0	1	0.0	0.001	6.2	LOS A	0.0	0.0	0.38	0.49	0.38	44.0
Approach		174	3.0	174	3.0	0.045	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.8
All Ve	hicles	563	1.9	<mark>561</mark> ^{N1}	1.9	0.212	2.4	NA	0.4	3.0	0.15	0.18	0.15	46.2

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 5 [2020 PM peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B, D, E Output Phase Sequence: A, B, D, E

Site Layout

Movement Class: All Movement Classes

Other Movement Class (MC) Stopped _1

Continuous Movement Phase Transition Applied

Vehicle Movement Performance														
Mov	Turn					Deg.	Aver.	Level of	AVERA	AVERAGE BACK		EffectiveA	ver. No.	Aver.
U		FLO	/VS HV1	FLO [Total	VVS HV 1	Sam	Delay	Service	[Veh	JUEUE Dist 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		, late		km/h
South: Woodville Road														
1	L2	58	0.0	54	0.0	0.821	36.5	LOS C	24.2	181.0	0.90	0.83	0.90	16.5
31	T1	1568	8.6	1460	8.6	0.821	30.9	LOS C	24.2	181.0	0.90	0.83	0.91	35.3
32	R2	15	7.1	14	7.1	0.184	79.6	LOS F	0.6	4.4	0.99	0.69	0.99	18.4
Appro	bach	1641	8.3	1528 [^]	8.2	0.821	31.6	LOS C	24.2	181.0	0.90	0.83	0.91	34.6
East: Llewellyn Avenue														
21	L2	91	14.0	91	14.0	0.778	59.5	LOS E	6.7	50.2	0.90	0.86	1.05	18.2
5	T1	84	1.3	84	1.3	0.778	54.8	LOS D	6.7	50.2	0.90	0.86	1.05	18.2
23	R2	146	25.2	146	25.2	*0.902	83.9	LOS F	7.0	59.9	0.95	1.04	1.41	23.6
Appro	bach	321	15.7	321	15.7	0.902	69.4	LOS E	7.0	59.9	0.92	0.94	1.22	21.4
North	: Wood	ville Roa	d											
24	L2	84	18.8	84	18.8	0.838	27.9	LOS B	30.9	231.9	0.86	0.81	0.86	41.3
25	T1	1809	7.5	1809	7.5	*0.838	22.4	LOS B	30.9	231.9	0.86	0.81	0.86	35.8
9	R2	159	2.6	159	2.6	*0.827	50.0	LOS D	5.0	35.7	1.00	0.89	1.23	24.1
Appro	bach	2053	7.6	2053	7.6	0.838	24.8	LOS B	30.9	231.9	0.87	0.82	0.89	34.9
West: Villawood Road														
10	L2	174	2.4	174	2.4	0.104	4.9	LOS A	0.3	2.5	0.10	0.56	0.10	49.6
11	T1	3	33.3	3	33.3	0.009	45.9	LOS D	0.1	0.9	0.81	0.53	0.81	22.7
12	R2	80	0.0	80	0.0	0.389	65.6	LOS E	3.1	22.0	0.96	0.77	0.96	4.6
Approach		257	2.0	257	2.0	0.389	24.3	LOS B	3.1	22.0	0.38	0.63	0.38	30.5
All Ve	hicles	4272	8.1	4159 ^N	8.4	0.902	30.7	LOS C	30.9	231.9	0.86	0.82	0.89	32.8

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian Movement Performance												
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.		
ID Crossing	FIOW	Delay	Service	[Ped Dist]		Que	Stop Rate	Time	Dist.	Speed		
	ped/h	sec		ped	m			sec	m	m/sec		
South: Woodville Road												
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94		
East: Llewellyn	Avenue											
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94		
West: Villawood Road												
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94		
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94		

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 5 [2020 PM peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehic	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	Iville Roa	ad											
1	L2	63	0.0	63	0.0	1.225	271.6	LOS F	36.1	270.0	1.00	2.03	2.40	4.2
31	T1	1566	8.6	1566	8.6	* 1.225	266.5	LOS F	36.1	270.0	1.00	2.05	2.40	3.5
Appro	ach	1629	8.3	1629	8.3	1.225	266.7	LOS F	36.1	270.0	1.00	2.05	2.40	3.6
East:	Binna B	Burra St												
21	L2	24	0.0	24	0.0	0.642	71.8	LOS F	4.3	31.1	1.00	0.82	1.05	3.3
5	T1	55	7.7	55	7.7	*0.642	67.9	LOS E	4.3	31.1	1.00	0.82	1.05	6.3
23	R2	84	0.0	84	0.0	0.642	73.8	LOS F	4.3	31.1	1.00	0.83	1.09	3.2
Appro	ach	163	2.6	163	2.6	0.642	71.5	LOS F	4.3	31.1	1.00	0.83	1.07	4.3
North	Wood	ville Roa	d											
24	L2	141	1.5	141	1.5	0.448	7.3	LOS A	3.3	24.7	0.14	0.24	0.14	24.2
25	T1	1831	8.0	1831	8.0	0.448	1.9	LOS A	3.6	26.8	0.14	0.16	0.14	50.2
9	R2	13	100.0	13	100. 0	*0.276	83.9	LOS F	0.6	7.4	1.00	0.70	1.00	9.1
Appro	ach	1984	8.1	1984	8.1	0.448	2.8	LOS A	3.6	26.8	0.15	0.17	0.15	44.3
All Ve	hicles	3777	7.9	3777	7.9	1.225	119.6	LOS F	36.1	270.0	0.55	1.01	1.16	6.1

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movement	t Perfori	mance							
Mov	Dem.	Aver.	Level of	AVERAGE	E BACK OF	Prop. E	ffective	Travel	Travel	Aver.
D Clossing	Flow	Delay	Service	QU [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Wood	ville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
East: Binna E	Burra St									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howatt	Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestriar	ns 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:07:57 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

■ Network: 6 [2020 PM Peak With Dev (Network Folder: PM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2020 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehic	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAC OF Q [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
30	L2	173	0.0	173	0.0	0.389	9.8	LOS A	5.3	38.7	0.31	0.41	0.31	48.6
31	T1	1673	8.2	1673	8.2	*0.882	22.7	LOS B	12.1	90.6	0.64	0.71	0.74	31.4
Appro	ach	1845	7.4	1845	7.4	0.882	21.5	LOS B	12.1	90.6	0.61	0.68	0.70	33.6
North	Wood	ville Roa	d											
25	T1	1902	7.9	1902	7.9	0.440	1.0	LOS A	2.9	21.9	0.07	0.07	0.07	58.5
Appro	ach	1902	7.9	1902	7.9	0.440	1.0	LOS A	2.9	21.9	0.07	0.07	0.07	58.5
West:	Kirran	g Avenue												
27	L2	18	0.0	18	0.0	0.011	7.1	LOS A	0.2	1.7	0.09	0.55	0.09	44.1
29	R2	175	0.0	175	0.0	*0.876	81.4	LOS F	8.1	56.6	1.00	0.96	1.31	22.8
Appro	ach	193	0.0	193	0.0	0.876	74.5	LOS F	8.1	56.6	0.92	0.92	1.20	23.4
All Ve	hicles	3940	7.3	3940	7.3	0.882	14.2	LOS A	12.1	90.6	0.37	0.40	0.42	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mo	vement	Perform	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodville	Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 PM Peak With Dev Give-Way (Two-Way)

Site Layout

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn	DEM	AND	ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
UI D		FLO'	WS	FLO Totol	WS	Satn	Delay	Service		JUEUE Dict 1	Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	гпvј %	v/c	sec		veh	m		Nale		km/h
South	n: Villaw	ood Plac	ce											
1	L2	1	0.0	1	0.0	0.001	5.7	LOS A	0.0	0.0	0.35	0.48	0.35	44.4
2	T1	1	0.0	1	0.0	0.039	9.1	LOS A	0.1	0.4	0.52	0.67	0.52	38.3
3	R2	34	0.0	34	0.0	0.039	7.0	LOS A	0.1	0.4	0.52	0.67	0.52	35.5
Appro	bach	36	0.0	36	0.0	0.039	7.1	LOS A	0.1	0.4	0.52	0.66	0.52	36.2
East:	Villawo	od Road												
4	L2	33	0.0	32	0.0	0.280	8.3	LOS A	0.6	4.4	0.26	0.14	0.26	42.4
5	T1	306	1.7	304	1.7	0.280	1.8	LOS A	0.6	4.4	0.26	0.14	0.26	46.3
6	R2	65	0.0	65	0.0	0.280	8.8	LOS A	0.6	4.4	0.26	0.14	0.26	37.9
Appro	bach	404	1.3	<mark>400</mark> N1	1.3	0.280	3.4	NA	0.6	4.4	0.26	0.14	0.26	45.5
North	: Villaw	ood Plac	e											
7	L2	49	0.0	49	0.0	0.049	5.7	LOS A	0.1	0.5	0.35	0.57	0.35	27.8
8	T1	1	0.0	1	0.0	0.003	9.1	LOS A	0.0	0.0	0.56	0.56	0.56	37.6
9	R2	1	0.0	1	0.0	0.003	6.6	LOS A	0.0	0.0	0.56	0.56	0.56	42.0
Appro	bach	52	0.0	52	0.0	0.049	5.8	LOS A	0.1	0.5	0.36	0.57	0.36	29.2
West	Villawo	ood Road	d											
10	L2	2	0.0	2	0.0	0.075	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.1
11	T1	287	1.8	287	1.8	0.075	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
12	R2	1	0.0	1	0.0	0.002	7.1	LOS A	0.0	0.0	0.46	0.51	0.46	43.4
Appro	bach	291	1.8	291	1.8	0.075	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.9
All Ve	hicles	782	1.3	<mark>778</mark> N1	1.4	0.280	2.5	NA	0.6	4.4	0.18	0.14	0.18	46.4

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B, D, E Output Phase Sequence: A, B, D, E

Site Layout

Movement Class: All Movement Classes

Other Movement Class (MC) Stopped _1

Continuous Movement Phase Transition Applied

Vehio	cle Mo	vement	Perfo	rmand	e									
Mov	Turn			ARRI	VAL	Deg.	Aver.	Level of	AVERA		Prop.	EffectiveA	ver. No.	Aver.
שו		[Total	HV 1	[Total	HV 1	Saur	Delay	Service	[Veh.	Dist 1	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Wood	lville Roa	d											
1	L2	71	0.0	65	0.0	0.888	49.6	LOS D	24.2	181.0	0.98	0.97	1.07	12.7
31	T1	1568	8.6	1435	8.6	*0.888	44.7	LOS D	24.2	181.0	0.98	0.97	1.07	29.8
32	R2	15	7.1	13	7.1	0.155	77.8	LOS F	0.6	4.2	0.99	0.69	0.99	18.7
Appro	bach	1654	8.2	1513 ^N	8.2	0.888	45.2	LOS D	24.2	181.0	0.98	0.97	1.07	29.2
East:	Llewell	yn Avenı	le											
21	L2	91	14.0	91	14.0	0.806	61.2	LOS E	7.1	52.7	0.89	0.89	1.09	17.9
5	T1	89	1.2	89	1.2	0.806	56.5	LOS E	7.1	52.7	0.89	0.89	1.09	17.9
23	R2	146	25.2	146	25.2	*0.938	95.8	LOS F	7.6	64.9	0.96	1.10	1.53	21.9
Appro	ach	326	15.5	326	15.5	0.938	75.4	LOS F	7.6	64.9	0.92	0.98	1.29	20.3
North	: Wood	ville Roa	d											
24	L2	84	18.8	84	18.8	0.858	30.6	LOS C	32.6	244.9	0.89	0.85	0.90	40.0
25	T1	1809	7.5	1809	7.5	0.858	25.2	LOS B	32.6	244.9	0.90	0.85	0.91	34.1
9	R2	244	1.7	244	1.7	*0.947	65.3	LOS E	9.0	63.6	1.00	1.01	1.44	20.4
Appro	ach	2138	7.3	2138	7.3	0.947	30.0	LOS C	32.6	244.9	0.91	0.86	0.97	32.0
West:	Villawo	ood Road	ł											
10	L2	253	1.7	253	1.7	0.150	4.9	LOS A	0.5	3.7	0.11	0.56	0.11	49.7
11	T1	7	14.3	7	14.3	0.019	45.1	LOS D	0.2	1.9	0.81	0.55	0.81	22.9
12	R2	114	0.0	114	0.0	0.539	67.0	LOS E	4.6	31.9	0.98	0.80	0.98	4.5
Appro	ach	374	1.4	374	1.4	0.539	24.6	LOS B	4.6	31.9	0.39	0.63	0.39	30.5
All Ve	hicles	4492	7.7	4351 ^N	8.0	0.947	38.2	LOS C	32.6	244.9	0.89	0.89	0.98	29.4

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian M	ovement	Perform	nance							
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	FIOW	Delay	Service	QUI [Ped	=∪E Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodvill	le Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94
East: Llewellyn	Avenue									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94
West: Villawood	d Road									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	Iville Roa	d											
1	L2	102	0.0	102	0.0	1.245	288.6	LOS F	36.2	270.0	1.00	2.06	2.47	3.9
31	T1	1574	8.6	1574	8.6	* 1.245	283.7	LOS F	36.2	270.0	1.00	2.10	2.48	3.3
Appro	ach	1676	8.0	1676	8.0	1.245	284.0	LOS F	36.2	270.0	1.00	2.09	2.48	3.4
East:	Binna I	Burra St												
21	L2	24	0.0	24	0.0	0.671	72.5	LOS F	4.5	32.4	1.00	0.84	1.07	3.3
5	T1	56	7.5	56	7.5	*0.671	68.7	LOS E	4.5	32.4	1.00	0.84	1.07	6.2
23	R2	89	0.0	89	0.0	0.671	74.6	LOS F	4.5	32.4	1.00	0.85	1.12	3.1
Appro	ach	169	2.5	169	2.5	0.671	72.3	LOS F	4.5	32.4	1.00	0.84	1.10	4.2
North	: Wood	ville Roa	d											
24	L2	145	1.4	145	1.4	0.455	7.6	LOS A	3.9	28.8	0.16	0.25	0.16	24.0
25	T1	1860	7.9	1860	7.9	0.455	2.2	LOS A	4.3	31.9	0.16	0.18	0.16	49.1
9	R2	13	100.0	13	100. 0	*0.276	83.9	LOS F	0.6	7.4	1.00	0.70	1.00	9.1
Appro	ach	2018	8.0	2018	8.0	0.455	3.1	LOS A	4.3	31.9	0.17	0.19	0.17	43.5
All Ve	hicles	3863	7.8	3863	7.8	1.245	128.0	LOS F	36.2	270.0	0.57	1.04	1.21	5.8

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestria	n Movement	t Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Clossi	ing Flow	Delay	Service	QU [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woo	odville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
East: Binna	a Burra St									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howa	att Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestri	ians 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:08:28 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

■ Network: 3 [2031 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2031 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF ([Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
30	L2	17	0.0	17	0.0	0.265	10.4	LOS A	4.3	31.9	0.31	0.29	0.31	49.4
31	T1	1898	6.9	1898	6.9	0.600	7.3	LOS A	13.5	100.1	0.43	0.41	0.43	47.1
Appro	bach	1915	6.9	1915	6.9	0.600	7.3	LOS A	13.5	100.1	0.43	0.40	0.43	47.1
North	: Wood	ville Roa	d											
25	T1	1927	11.3	1927	11.3	0.510	3.2	LOS A	7.0	53.5	0.20	0.18	0.20	55.6
26	R2	13	0.0	13	0.0	*0.510	8.3	LOS A	3.5	26.9	0.17	0.16	0.17	49.8
Appro	ach	1940	11.2	1940	11.2	0.510	3.2	LOS A	7.0	53.5	0.20	0.18	0.20	55.6
West:	Kirran	g Avenue												
27	L2	8	0.0	8	0.0	0.005	7.8	LOS A	0.0	0.1	0.09	0.54	0.09	44.1
29	R2	208	12.1	208	12.1	*0.886	81.2	LOS F	9.8	75.7	1.00	0.97	1.31	22.7
Appro	bach	217	11.7	217	11.7	0.886	78.4	LOS F	9.8	75.7	0.96	0.96	1.26	23.0
All Ve	hicles	4072	9.2	4072	9.2	0.886	9.2	LOS A	13.5	100.1	0.35	0.33	0.36	47.1

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mo	vement	Perform	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodville	Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 AM Peak Without Dev Give-Way (Two-Way)

Site Layout

Vehio	cle Mo	vement	Perfo	rman	се									
Mov	Turn	DEMA	AND	ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
ID		FLO	WS LIV1	FLO Toto	WS I ЦV I	Satn	Delay	Service	UF (UEUE Diet 1	Que	Stop	Cycles	Speed
		veh/h	%	veh/h	111V j 1 %	v/c	sec		veh	m		Nate		km/h
South	: Villaw	ood Plac	e											
1	L2	1	0.0	1	0.0	0.001	4.6	LOS A	0.0	0.0	0.08	0.50	0.08	45.3
2	T1	1	0.0	1	0.0	0.018	4.3	LOS A	0.0	0.2	0.23	0.52	0.23	40.6
3	R2	25	0.0	25	0.0	0.018	5.0	LOS A	0.0	0.2	0.23	0.52	0.23	38.2
Appro	bach	27	0.0	27	0.0	0.018	4.9	LOS A	0.0	0.2	0.22	0.52	0.22	39.0
East:	Villawo	od Road												
4	L2	6	0.0	6	0.0	0.038	5.1	LOS A	0.1	0.5	0.13	0.26	0.13	42.6
5	T1	23	31.8	23	31.8	0.038	0.4	LOS A	0.1	0.5	0.13	0.26	0.13	46.4
6	R2	18	0.0	18	0.0	0.038	5.2	LOS A	0.1	0.5	0.13	0.26	0.13	38.2
Appro	bach	47	15.6	47	15.6	0.038	2.8	NA	0.1	0.5	0.13	0.26	0.13	44.3
North	: Villaw	ood Plac	e											
7	L2	35	0.0	35	0.0	0.028	4.8	LOS A	0.0	0.3	0.15	0.50	0.15	29.5
8	T1	1	0.0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.22	0.45	0.22	41.1
9	R2	1	0.0	1	0.0	0.002	4.8	LOS A	0.0	0.0	0.22	0.45	0.22	44.3
Appro	bach	37	0.0	37	0.0	0.028	4.8	LOS A	0.0	0.3	0.15	0.50	0.15	31.7
West:	Villawo	ood Road	ł											
10	L2	1	0.0	1	0.0	0.018	4.6	LOS A	0.0	0.0	0.00	0.02	0.00	49.0
11	T1	65	9.7	65	9.7	0.018	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	49.9
12	R2	1	0.0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.12	0.50	0.12	44.9
Appro	bach	67	9.4	67	9.4	0.018	0.2	NA	0.0	0.0	0.00	0.02	0.00	49.7
All Ve	hicles	179	7.6	179	7.6	0.038	2.5	NA	0.1	0.5	0.10	0.26	0.10	45.0

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

■ Network: 3 [2031 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, C, D, E Output Phase Sequence: A, C, D, E

Site Layout

Movement Class: All Movement Classes

Phase Transition Applied

Other Movement Class (MC) Stopped

Vehicle Movement Performance														
Mov	Turn	n DEMAND		ARRIVAL		Deg.	Aver.	Level of	AVERAGE BACK		Prop.	EffectiveAver. No.		Aver.
D		FLO'	WS	FLO Total		Satn	Delay	Service			Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		veh	m		Nale		km/h
South	: Wood	lville Roa	ad											
1	L2	16	0.0	16	0.0	*0.727	7.2	LOS A	4.4	32.6	0.13	0.12	0.13	52.2
31	T1	1891	7.0	1891	7.0	0.727	3.3	LOS A	10.9	81.0	0.22	0.21	0.22	55.8
32	R2	47	4.4	47	4.4	0.312	51.6	LOS D	1.6	11.8	1.00	0.74	1.00	23.8
Appro	ach	1954	6.8	1954	6.8	0.727	4.5	LOS A	10.9	81.0	0.23	0.22	0.23	54.3
East: Llewellyn Avenue														
21	L2	18	35.3	18	35.3	0.069	51.5	LOS D	0.7	6.7	0.83	0.67	0.83	19.6
5	T1	3	33.3	3	33.3	0.069	46.6	LOS D	0.7	6.7	0.83	0.67	0.83	19.6
23	R2	85	51.9	85	51.9	*0.651	72.5	LOS F	3.6	36.4	1.00	0.83	1.07	25.3
Appro	ach	106	48.5	106	48.5	0.651	68.2	LOS E	3.6	36.4	0.96	0.80	1.02	24.6
North: Woodville Road														
24	L2	123	16.2	123	16.2	0.895	35.0	LOS C	38.8	299.5	0.92	0.91	0.97	38.1
25	T1	1900	11.5	1900	11.5	*0.895	29.6	LOS C	38.8	299.5	0.92	0.91	0.98	31.7
9	R2	28	22.2	28	22.2	*0.420	81.9	LOS F	1.3	10.5	1.00	0.72	1.00	17.5
Appro	ach	2052	11.9	2052	11.9	0.895	30.6	LOS C	38.8	299.5	0.93	0.91	0.98	31.9
West: Villawood Road														
10	L2	39	13.5	39	13.5	0.025	4.9	LOS A	0.1	0.6	0.09	0.55	0.09	49.0
11	T1	8	0.0	8	0.0	0.038	59.5	LOS E	0.3	2.2	0.92	0.62	0.92	19.5
12	R2	76	1.4	76	1.4	0.562	74.7	LOS F	3.2	22.7	1.00	0.77	1.00	4.0
Approach		123	5.1	123	5.1	0.562	51.6	LOS D	3.2	22.7	0.71	0.69	0.71	14.7
All Ve	hicles	4235	10.3	4235	10.3	0.895	20.1	LOS B	38.8	299.5	0.60	0.58	0.63	39.3

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Movement Performance												
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.		
ID Crossing	FIOW	Delay	Service	[Ped Dist]		Que	Stop Rate	Time	Dist.	Speed		
	ped/h	sec		ped	m			sec	m	m/sec		
South: Woodvill	le Road											
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94		
East: Llewellyn	Avenue											
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94		
West: Villawood Road												
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94		
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94		

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

■ Network: 3 [2031 AM Peak Without Dev (Network Folder: AM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehicle Movement Performance														
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Woodville Road														
1	L2	18	0.0	18	0.0	0.724	17.2	LOS B	22.3	165.3	0.63	0.59	0.63	27.3
31	T1	1892	6.8	1892	6.8	*0.724	11.7	LOS A	22.6	167.2	0.63	0.59	0.63	35.5
Appro	ach	1909	6.8	1909	6.8	0.724	11.7	LOS A	22.6	167.2	0.63	0.59	0.63	35.4
East: Binna Burra St														
21	L2	46	2.3	46	2.3	0.377	68.3	LOS E	2.8	21.3	0.97	0.76	0.97	3.4
5	T1	23	27.3	23	27.3	*0.377	64.5	LOS E	2.8	21.3	0.97	0.76	0.97	6.4
23	R2	66	4.8	66	4.8	0.358	68.1	LOS E	2.7	19.3	0.97	0.76	0.97	3.4
Appro	ach	136	7.8	136	7.8	0.377	67.6	LOS E	2.8	21.3	0.97	0.76	0.97	3.9
North: Woodville Road														
24	L2	66	7.9	66	7.9	0.459	6.4	LOS A	1.5	11.7	0.06	0.11	0.06	25.3
25	T1	1905	11.5	1905	11.5	0.459	1.1	LOS A	2.6	20.0	0.08	0.09	0.08	54.1
9	R2	21	100.0	21	100. 0	*0.460	85.2	LOS F	1.0	12.5	1.00	0.72	1.01	9.0
Appro	ach	1993	12.3	1993	12.3	0.460	2.1	LOS A	2.6	20.0	0.09	0.10	0.09	48.4
All Ve	hicles	4038	9.5	4038	9.5	0.724	8.9	LOS A	22.6	167.2	0.37	0.35	0.37	36.1

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Pedestria	n Movement	t Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Clossi	ing Flow	Delay	Service	QU [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woo	odville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
East: Binna	a Burra St									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howa	att Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestri	ians 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:07:09 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

■ Network: 4 [2031 AM Peak With Dev (Network Folder: AM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2031 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF ([Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	lville Roa	d											
30	L2	77	0.0	77	0.0	0.274	12.3	LOS A	5.0	36.5	0.36	0.40	0.36	47.3
31	T1	1914	6.9	1914	6.9	0.621	9.9	LOS A	16.6	122.8	0.51	0.49	0.51	43.2
Appro	ach	1991	6.6	1991	6.6	0.621	10.0	LOS A	16.6	122.8	0.51	0.48	0.51	43.5
North	: Wood	ville Roa	d											
25	T1	1958	11.1	1958	11.1	0.549	6.7	LOS A	10.2	78.1	0.34	0.31	0.34	51.5
26	R2	13	0.0	13	0.0	*0.549	12.8	LOS A	7.3	56.1	0.34	0.32	0.34	46.2
Appro	ach	1971	11.1	1971	11.1	0.549	6.7	LOS A	10.2	78.1	0.34	0.31	0.34	51.5
West:	Kirran	g Avenue												
27	L2	8	0.0	8	0.0	0.005	7.8	LOS A	0.0	0.1	0.09	0.54	0.09	44.1
29	R2	283	8.9	283	8.9	*0.904	80.5	LOS F	13.6	102.2	1.00	0.99	1.30	22.9
Appro	ach	292	8.7	292	8.7	0.904	78.4	LOS F	13.6	102.2	0.97	0.97	1.27	23.1
All Ve	hicles	4253	8.8	4253	8.8	0.904	13.2	LOS A	16.6	122.8	0.46	0.44	0.48	43.1

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perform	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Crossing Flow Delay Serv			QUE	EUE	Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodville	Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 AM Peak With Dev Give-Way (Two-Way)

Site Layout

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn			ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
ט ו		FLU\ [Total]	/vS і	FLU Total	VVS ГН\/ 1	Sath	Delay	Service		QUEUE Diet 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		naic		km/h
South	: Villaw	ood Plac	e											
1	L2	1	0.0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.14	0.48	0.14	45.1
2	T1	1	0.0	1	0.0	0.020	5.2	LOS A	0.0	0.2	0.32	0.54	0.32	40.1
3	R2	25	0.0	25	0.0	0.020	5.3	LOS A	0.0	0.2	0.32	0.54	0.32	37.6
Appro	ach	27	0.0	27	0.0	0.020	5.3	LOS A	0.0	0.2	0.31	0.54	0.31	38.4
East:	Villawo	od Road												
4	L2	6	0.0	6	0.0	0.061	5.9	LOS A	0.1	0.7	0.14	0.15	0.14	44.3
5	T1	63	11.7	63	11.7	0.061	0.7	LOS A	0.1	0.7	0.14	0.15	0.14	47.5
6	R2	18	0.0	18	0.0	0.061	6.0	LOS A	0.1	0.7	0.14	0.15	0.14	40.7
Appro	ach	87	8.4	87	8.4	0.061	2.1	NA	0.1	0.7	0.14	0.15	0.14	46.7
North	: Villaw	ood Plac	е											
7	L2	35	0.0	35	0.0	0.030	5.1	LOS A	0.0	0.3	0.24	0.52	0.24	28.7
8	T1	1	0.0	1	0.0	0.002	5.1	LOS A	0.0	0.0	0.33	0.46	0.33	40.4
9	R2	1	0.0	1	0.0	0.002	5.2	LOS A	0.0	0.0	0.33	0.46	0.33	43.9
Appro	ach	37	0.0	37	0.0	0.030	5.1	LOS A	0.0	0.3	0.24	0.51	0.24	30.9
West:	Villawo	ood Road	ł											
10	L2	1	0.0	1	0.0	0.039	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.1
11	T1	148	4.3	148	4.3	0.039	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
12	R2	1	0.0	1	0.0	0.001	5.0	LOS A	0.0	0.0	0.19	0.49	0.19	44.7
Appro	ach	151	4.2	151	4.2	0.039	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.9
All Ve	hicles	302	4.5	302	4.5	0.061	1.8	NA	0.1	0.7	0.10	0.16	0.10	47.1

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, C, D, E Output Phase Sequence: A, C, D, E

Site Layout

Movement Class: All Movement Classes

Phase Transition Applied

Other Movement Class (MC) Stopped

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn	DEM	AND	ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
D		FLO'	WS	FLO Tata	WS	Satn	Delay	Service			Que	Stop	Cycles	Speed
		veh/h	пvј %	veh/h	гпvј %	v/c	sec		ven.	m Dist j		Nale		km/h
South	: Wood	lville Roa	ad											
1	L2	20	0.0	20	0.0	*0.729	7.3	LOS A	4.6	34.4	0.13	0.13	0.13	51.7
31	T1	1891	7.0	1891	7.0	0.729	3.3	LOS A	10.9	81.0	0.22	0.21	0.22	55.8
32	R2	47	4.4	47	4.4	0.312	51.6	LOS D	1.6	11.8	1.00	0.74	1.00	23.8
Appro	ach	1958	6.8	1958	6.8	0.729	4.5	LOS A	10.9	81.0	0.24	0.22	0.24	54.2
East:	Llewell	yn Aveni	le											
21	L2	18	35.3	18	35.3	0.082	54.1	LOS D	0.8	7.4	0.85	0.67	0.85	19.1
5	T1	5	20.0	5	20.0	0.082	49.3	LOS D	0.8	7.4	0.85	0.67	0.85	19.1
23	R2	85	51.9	85	51.9	*0.701	74.4	LOS F	3.7	37.3	1.00	0.86	1.14	25.0
Appro	ach	108	47.6	108	47.6	0.701	69.8	LOS E	3.7	37.3	0.97	0.82	1.08	24.2
North	: Wood	ville Roa	d											
24	L2	123	16.2	123	16.2	0.895	35.0	LOS C	38.8	299.5	0.92	0.91	0.97	38.1
25	T1	1900	11.5	1900	11.5	*0.895	29.6	LOS C	38.8	299.5	0.92	0.91	0.98	31.7
9	R2	67	9.4	67	9.4	*0.917	94.3	LOS F	3.3	25.0	1.00	0.97	1.58	15.8
Appro	ach	2091	11.7	2091	11.7	0.917	32.0	LOS C	38.8	299.5	0.93	0.91	0.99	31.3
West:	Villaw	ood Road	d											
10	L2	114	4.6	114	4.6	0.069	4.9	LOS A	0.2	1.6	0.10	0.55	0.10	49.5
11	T1	14	0.0	14	0.0	0.061	59.9	LOS E	0.5	3.6	0.92	0.64	0.92	19.5
12	R2	109	1.0	109	1.0	0.824	81.4	LOS F	5.0	35.1	1.00	0.92	1.28	3.7
Appro	ach	237	2.7	237	2.7	0.824	43.4	LOS D	5.0	35.1	0.56	0.73	0.69	19.8
All Ve	hicles	4394	9.9	4394	9.9	0.917	21.3	LOS B	38.8	299.5	0.60	0.59	0.64	38.4

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	ovement	Perform	nance							
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	FIOW	Delay	Service	QUI [Ped	=∪E Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodvill	le Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94
East: Llewellyn	Avenue									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94
West: Villawood	d Road									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehic	cle Mo	vement	Perfo	rmano	e									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF C [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	Iville Roa	d											
1	L2	31	0.0	31	0.0	0.730	17.0	LOS B	20.5	151.7	0.57	0.54	0.57	27.4
31	T1	1894	6.8	1894	6.8	*0.730	11.4	LOS A	20.7	153.5	0.57	0.54	0.57	35.8
Appro	ach	1924	6.7	1924	6.7	0.730	11.5	LOS A	20.7	153.5	0.57	0.54	0.57	35.5
East:	Binna I	Burra St												
21	L2	46	2.3	46	2.3	0.382	68.4	LOS E	2.8	21.6	0.97	0.76	0.97	3.4
5	T1	24	26.1	24	26.1	*0.382	64.5	LOS E	2.8	21.6	0.97	0.76	0.97	6.4
23	R2	68	4.6	68	4.6	0.369	68.2	LOS E	2.7	19.9	0.97	0.76	0.97	3.4
Appro	ach	139	7.6	139	7.6	0.382	67.6	LOS E	2.8	21.6	0.97	0.76	0.97	3.9
North	: Wood	ville Roa	d											
24	L2	68	7.7	68	7.7	0.464	6.4	LOS A	1.5	11.2	0.06	0.11	0.06	25.3
25	T1	1927	11.4	1927	11.4	0.464	0.9	LOS A	2.0	15.3	0.07	0.08	0.07	54.8
9	R2	21	100.0	21	100. 0	*0.460	85.2	LOS F	1.0	12.5	1.00	0.72	1.01	9.0
Appro	ach	2017	12.2	2017	12.2	0.464	2.0	LOS A	2.0	15.3	0.08	0.09	0.08	48.9
All Ve	hicles	4080	9.4	4080	9.4	0.730	8.7	LOS A	20.7	153.5	0.34	0.32	0.34	36.2

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Movement	t Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Clossi	ing Flow	Delay	Service	QU [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woo	odville Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94
East: Binna	a Burra St									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93
West: Howa	att Street									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92
All Pedestri	ians 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:07:34 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 7 [2031 PM Peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2031 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Movement Class: All Movement Classes

REF: Reference Phase

Vehio	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEM/ FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF ([Veh. veh	GE BACK QUEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Wood	dville Roa	ıd											
30	L2	43	0.0	43	0.0	0.388	9.8	LOS A	13.6	102.8	0.31	0.32	0.31	49.6
31	T1	1776	10.0	1776	10.0	*0.879	21.3	LOS B	29.5	224.0	0.62	0.66	0.70	32.7
Appro	bach	1819	9.8	1819	9.8	0.879	21.0	LOS B	29.5	224.0	0.61	0.65	0.69	33.3
North	: Wood	lville Roa	d											
25	T1	2077	12.5	2029	12.8	0.484	2.6	LOS A	6.2	48.5	0.18	0.17	0.18	56.4
Appro	bach	2077	12.5	2029 ^N 1	12.8	0.484	2.6	LOS A	6.2	48.5	0.18	0.17	0.18	56.4
West:	Kirran	g Avenue)											
27	L2	23	0.0	23	0.0	0.014	7.6	LOS A	0.6	4.3	0.09	0.55	0.09	44.1
29	R2	106	0.0	106	0.0	*0.518	69.0	LOS E	4.3	30.1	0.99	0.79	0.99	25.0
Appro	bach	129	0.0	129	0.0	0.518	58.0	LOS E	4.3	30.1	0.83	0.74	0.83	26.2
All Ve	hicles	4025	10.9	<mark>3977</mark> N	11.0	0.879	12.9	LOS A	29.5	224.0	0.40	0.41	0.44	43.6

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian Mo	vement	Perform	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Crossing Flow Delay Serv			QUE	EUE	Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodville	Road									
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 PM Peak Without Dev Give-Way (Two-Way)

Site Layout

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn	DEM	AND	ARR	IVAL	Deg.	Aver.	Level of	AVER/	AGE BACK	Prop.	EffectiveA	ver. No.	Aver.
ID		FLO Totol	WS	FLO Totol	WS	Satn	Delay	Service			Que	Stop	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Nate		km/h
South	n: Villaw	ood Pla	ce											
1	L2	1	0.0	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.32	0.48	0.32	44.5
2	T1	1	0.0	1	0.0	0.104	7.8	LOS A	2.5	17.5	0.49	0.68	0.49	38.9
3	R2	51	0.0	51	0.0	0.104	6.6	LOS A	2.5	17.5	0.49	0.68	0.49	36.1
Appro	bach	53	0.0	53	0.0	0.104	6.6	LOS A	2.5	17.5	0.49	0.67	0.49	36.6
East:	Villawo	od Road	l											
4	L2	39	0.0	38	0.0	0.278	6.9	LOS A	0.6	4.4	0.23	0.18	0.23	42.6
5	T1	260	2.0	253	2.1	0.278	1.4	LOS A	0.6	4.4	0.23	0.18	0.23	46.4
6	R2	91	0.0	88	0.0	0.278	7.1	LOS A	0.6	4.4	0.23	0.18	0.23	38.1
Appro	bach	389	1.4	<mark>380</mark> ^{N1}	1.4	0.278	3.3	NA	0.6	4.4	0.23	0.18	0.23	45.2
North	: Villaw	ood Plac	e											
7	L2	71	0.0	71	0.0	0.063	5.3	LOS A	0.1	0.6	0.28	0.54	0.28	28.3
8	T1	1	0.0	1	0.0	0.003	7.8	LOS A	0.0	0.0	0.51	0.53	0.51	38.7
9	R2	1	0.0	1	0.0	0.003	6.1	LOS A	0.0	0.0	0.51	0.53	0.51	42.7
Appro	bach	73	0.0	73	0.0	0.063	5.4	LOS A	0.1	0.6	0.29	0.54	0.29	29.4
West	: Villaw	ood Road	d											
10	L2	1	0.0	1	0.0	0.051	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.1
11	T1	194	2.2	194	2.2	0.051	0.0	LOS A	4.8	34.4	0.00	0.00	0.00	49.9
12	R2	1	0.0	1	0.0	0.001	6.7	LOS A	0.0	0.0	0.42	0.50	0.42	43.7
Appro	bach	196	2.2	196	2.2	0.051	0.1	NA	4.8	34.4	0.00	0.01	0.00	49.9
All Ve	ehicles	711	1.3	701 ^{N1}	1.4	0.278	2.9	NA	4.8	34.4	0.19	0.21	0.19	45.5

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 7 [2031 PM Peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, B, D, E Output Phase Sequence: A, B, D, E

Site Layout

Movement Class: All Movement Classes

Other Movement Class (MC) Stopped _1

Continuous Movement Phase Transition Applied

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov	Turn			ARR	IVAL	Deg.	Aver.	Level of	AVERA		Prop.	EffectiveA	ver. No.	Aver.
שו		[Total	/vS HV1	Total	₩3 HV 1	Saur	Delay	Service	[Veh	Dist 1	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Wood	lville Roa	d											
1	L2	68	0.0	59	0.0	0.796	34.0	LOS C	24.0	181.0	0.86	0.80	0.86	17.5
31	T1	1701	10.0	1456	9.9	0.796	28.3	LOS B	24.0	181.0	0.87	0.80	0.87	36.5
32	R2	22	9.5	19	9.4	0.221	78.5	LOS F	0.8	6.1	0.99	0.70	0.99	18.6
Appro	bach	1792	9.6	1533 [^]	9.5	0.796	29.1	LOS C	24.0	181.0	0.87	0.80	0.87	35.7
East:	Llewell	yn Avenu	ie											
21	L2	85	13.6	85	13.6	1.023	137.4	LOS F	10.5	77.9	1.00	1.30	1.83	9.6
5	T1	78	0.0	78	0.0	1.023	132.7	LOS F	10.5	77.9	1.00	1.30	1.83	9.6
23	R2	174	24.8	174	24.8	* 1.281	333.8	LOS F	18.3	155.1	1.00	1.72	2.77	8.6
Appro	ach	337	16.3	337	16.3	1.281	237.6	LOS F	18.3	155.1	1.00	1.52	2.31	8.9
North	: Wood	ville Roa	d											
24	L2	109	14.4	109	14.4	0.901	33.3	LOS C	40.4	313.3	0.91	0.90	0.96	38.8
25	T1	2011	12.3	2011	12.3	*0.901	28.0	LOS B	40.4	313.3	0.92	0.91	0.97	32.6
9	R2	241	2.2	241	2.2	*0.987	86.9	LOS F	10.6	75.3	1.00	1.09	1.58	16.7
Appro	ach	2361	11.4	2361	11.4	0.987	34.2	LOS C	40.4	313.3	0.92	0.92	1.03	30.1
West	Villawo	ood Road	ł											
10	L2	204	2.1	204	2.1	0.121	4.9	LOS A	0.4	3.0	0.10	0.56	0.10	49.7
11	T1	1	0.0	1	0.0	0.003	51.5	LOS D	0.0	0.3	0.85	0.51	0.85	21.3
12	R2	108	0.0	108	0.0	1.917	875.8	LOS F	10.7	75.0	1.00	1.96	4.25	0.4
Appro	bach	314	1.3	314	1.3	1.917	306.1	LOS F	10.7	75.0	0.42	1.04	1.54	4.6
All Ve	hicles	4803	10.4	4545 ^N	11.0	1.917	66.3	LOS E	40.4	313.3	0.88	0.93	1.11	21.3

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian Movement Performance											
Mov LD Crossing	Dem.	Dem. Aver. L		AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.	
ID Crossing	FIOW	Delay	Service	QUEUE [Ped Dist]		Que	Stop Rate	Time	Dist.	Speed	
	ped/h	sec		ped	m			sec	m	m/sec	
South: Woodvill	le Road										
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94	
East: Llewellyn Avenue											
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94	
West: Villawood Road											
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94	
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94	

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

■ Network: 7 [2031 PM Peak Without Dev (Network Folder: PM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

_1

Movement Class: All Movement Classes

Vehicle Movement Performance														
Mov ID	Turn	DEM/ FLO [Total	AND WS HV]	ARRI FLO [Total	VAL WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERA OF ([Veh.	GE BACK QUEUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Woodville Road														
1	L2	76	0.0	76	0.0	1.341	373.7	LOS F	35.7	270.0	1.00	2.35	2.82	3.1
31	T1	1695	10.2	1695	10.2	*1.341	368.5	LOS F	35.7	270.0	1.00	2.38	2.82	2.6
Appro	bach	1771	9.8	1771	9.8	1.341	368.8	LOS F	35.7	270.0	1.00	2.37	2.82	2.6
East:	Binna I	Burra St												
21	L2	55	3.8	55	3.8	0.847	80.1	LOS F	6.4	45.9	1.00	0.98	1.29	3.0
5	T1	60	1.8	60	1.8	*0.847	76.3	LOS F	6.4	45.9	1.00	0.98	1.29	5.6
23	R2	106	0.0	106	0.0	0.847	84.0	LOS F	6.4	45.9	1.00	0.99	1.38	2.8
Appro	bach	221	1.4	221	1.4	0.847	80.9	LOS F	6.4	45.9	1.00	0.98	1.33	3.6
North	: Wood	ville Roa	d											
24	L2	178	1.2	173	1.2	0.497	7.1	LOS A	3.3	25.3	0.13	0.24	0.13	24.2
25	T1	2003	12.8	1955	13.1	0.497	1.5	LOS A	3.4	26.6	0.12	0.14	0.12	51.4
9	R2	29	100.0	29	100. 0	*0.644	87.0	LOS F	1.4	17.9	1.00	0.79	1.14	8.8
Appro	bach	2211	13.0	2157 ^N 1	13.4	0.644	3.2	LOS A	3.4	26.6	0.13	0.16	0.13	42.9
All Ve	hicles	4202	11.1	<mark>4149</mark> N 1	11.2	1.341	163.3	LOS F	35.7	270.0	0.55	1.15	1.34	4.6

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian Movement Performance											
Mov	Dem.	Aver. Level of		AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.	
ID Clossing	Flow	Delay	Service	QUEUE		Que	Stop Rate	lime	Dist.	Speed	
	ped/h	sec		ped	m			sec	m	m/sec	
South: Wood	ville Road										
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94	
East: Binna Burra St											
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93	
West: Howatt Street											
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92	
All Pedestriar	ns 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93	

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:08:51 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: Modelling of Intersections - Copy

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

■ Network: 8 [2031 PM Peak With Dev (Network Folder: PM Peak)]

Woodville Road and Kirrang Avenue Site Category: 2031 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import - Import Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Site Layout

Input Phase Sequence

Movement Class: All Movement Classes

REF: Reference Phase

Vehi	cle Mo	vement	Perfo	rmanc	е									
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND WS HV] %	ARRI FLO\ [Total veh/h	VAL NS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAC OF Q [Veh. veh	GE BACK UEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Woodville Road														
30	L2	165	0.0	165	0.0	0.423	10.0	LOS A	14.0	104.3	0.33	0.41	0.33	48.6
31	T1	1823	9.8	1823	9.8	*0.959	48.5	LOS D	33.7	255.7	0.79	0.97	1.03	20.4
Appro	bach	1988	8.9	1988	8.9	0.959	45.3	LOS D	33.7	255.7	0.75	0.92	0.97	22.6
North	: Wood	ville Roa	d											
25	T1	2105	12.4	2105	12.4	0.501	2.6	LOS A	6.8	52.4	0.19	0.17	0.19	56.4
Appro	bach	2105	12.4	2105	12.4	0.501	2.6	LOS A	6.8	52.4	0.19	0.17	0.19	56.4
West:	Kirran	g Avenue	9											
27	L2	23	0.0	23	0.0	0.014	7.7	LOS A	0.7	5.2	0.09	0.55	0.09	44.1
29	R2	187	0.0	187	0.0	*0.953	96.7	LOS F	9.6	67.4	1.00	1.05	1.51	20.6
Appro	bach	211	0.0	211	0.0	0.953	86.9	LOS F	9.6	67.4	0.90	1.00	1.36	21.4
All Ve	hicles	4304	10.2	4304	10.2	0.959	26.5	LOS B	33.7	255.7	0.48	0.56	0.61	34.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance														
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.				
ID Crossing	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed				
				[Ped	Dist]		Rate							
	ped/h	sec		ped	m			sec	m	m/sec				
South: Woodville	Road													
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94				
All Pedestrians	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.6	218.8	0.94				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

V Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 PM Peak With Dev Give-Way (Two-Way)

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Vehi	cle Mo	vement	Perfo	rmano	e									
Mov	Turn	DEMA		ARRI	VAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.
ט ו		FLO [Total	иS H\/1	FLU Total	VVS HV/1	Sath	Delay	Service	UF ([\/eh	QUEUE Diet 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Tato		km/h
South	ood Plac	e												
1	L2	1	0.0	1	0.0	0.001	5.9	LOS A	0.0	0.0	0.38	0.49	0.38	44.4
2	T1	1	0.0	1	0.0	0.126	10.4	LOS A	4.0	28.0	0.56	0.76	0.56	37.6
3	R2	51	0.0	51	0.0	0.126	7.7	LOS A	4.0	28.0	0.56	0.76	0.56	34.6
Appro	bach	53	0.0	53	0.0	0.126	7.7	LOS A	4.0	28.0	0.56	0.75	0.56	35.1
East:	Villawo	od Road												
4	L2	39	0.0	37	0.0	0.346	9.3	LOS A	1.0	6.8	0.32	0.16	0.36	41.3
5	T1	362	1.5	345	1.5	0.346	2.5	LOS A	1.0	6.8	0.32	0.16	0.36	47.5
6	R2	91	0.0	86	0.0	0.346	9.7	LOS A	1.0	6.8	0.32	0.16	0.36	36.3
Appro	bach	492	1.1	<mark>468</mark> N1	1.1	0.346	4.4	NA	1.0	6.8	0.32	0.16	0.36	46.2
North	: Villaw	ood Plac	е											
7	L2	71	0.0	71	0.0	0.071	5.9	LOS A	0.1	0.7	0.37	0.59	0.37	27.6
8	T1	1	0.0	1	0.0	0.004	10.3	LOS A	0.0	0.0	0.59	0.59	0.59	36.7
9	R2	1	0.0	1	0.0	0.004	7.0	LOS A	0.0	0.0	0.59	0.59	0.59	41.3
Appro	bach	73	0.0	73	0.0	0.071	6.0	LOS A	0.1	0.7	0.38	0.59	0.38	28.6
West	Villawo	ood Road	ł											
10	L2	1	0.0	1	0.0	0.081	4.9	LOS A	0.0	0.0	0.00	0.01	0.00	51.9
11	T1	311	1.4	311	1.4	0.081	0.0	LOS A	12.4	87.5	0.00	0.00	0.00	53.3
12	R2	1	0.0	1	0.0	0.002	7.6	LOS A	0.0	0.0	0.49	0.52	0.49	43.0
Appro	bach	313	1.3	313	1.3	0.081	0.1	NA	12.4	87.5	0.00	0.01	0.00	53.2
All Ve	hicles	929	1.0	<mark>906</mark> N1	1.0	0.346	3.2	NA	12.4	87.5	0.23	0.17	0.25	47.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak With Dev Signals - FQUISAT (Fixed-Time/SCATS) Coordinated Cycle

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time) Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times

Green Split Priority has been specified Phase Sequence: Map Extract Default - Import (2) Reference Phase: Phase A Input Phase Sequence: A, B, D, E Output Phase Sequence: A, B, D, E

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Input Phase Sequence

Movement Class: All Movement Classes

Other Movement Class (MC) Stopped _1

Continuous Movement Phase Transition Applied

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov	ov Turn DEMAND		ARR	IVAL	Deg.	Aver.	Level of	AVERA	GE BACK	Prop.	EffectiveA	ver. No.	Aver.	
ט ו		FLO\ [Total]	/vs н\/ 1	FLU Total	WS ГН\/ 1	Sath	Delay	Service	UF ([\/eh	QUEUE Dist 1	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Tato		km/h
South	: Wood	lville Roa	d											
1	L2	80	0.0	68	0.0	0.858	42.2	LOS C	24.0	181.0	0.95	0.90	0.99	14.6
31	T1	1701	10.0	1433	9.9	0.858	37.3	LOS C	24.0	181.0	0.95	0.90	0.99	32.5
32	R2	22	9.5	19	9.4	0.254	80.3	LOS F	0.8	6.1	1.00	0.70	1.00	18.3
Appro	bach	1803	9.6	1519 ^N	9.5	0.858	38.1	LOS C	24.0	181.0	0.95	0.90	0.99	31.7
East: Llewellyn Avenue														
21	L2	85	13.6	85	13.6	1.028	140.5	LOS F	10.9	81.0	1.00	1.31	1.84	9.5
5	T1	82	0.0	82	0.0	1.028	135.8	LOS F	10.9	81.0	1.00	1.31	1.84	9.5
23	R2	174	24.8	174	24.8	* 1.327	372.9	LOS F	19.4	164.7	1.00	1.80	2.92	7.8
Appro	bach	341	16.0	341	16.0	1.327	257.7	LOS F	19.4	164.7	1.00	1.56	2.39	8.3
North	: Wood	ville Roa	d											
24	L2	109	14.4	109	14.4	0.901	33.3	LOS C	40.4	313.3	0.91	0.90	0.96	38.8
25	T1	2011	12.3	2011	12.3	*0.901	28.0	LOS B	40.4	313.3	0.92	0.91	0.97	32.6
9	R2	321	1.6	321	1.6	* 1.036	111.7	LOS F	16.5	116.9	1.00	1.14	1.72	11.6
Appro	bach	2441	11.0	2441	11.0	1.036	39.2	LOS C	40.4	313.3	0.93	0.94	1.07	26.8
West:	Villawo	ood Road	ł											
10	L2	282	1.5	282	1.5	0.167	4.9	LOS A	0.6	4.3	0.11	0.56	0.11	49.7
11	T1	5	0.0	5	0.0	0.016	51.2	LOS D	0.2	1.3	0.85	0.57	0.85	21.4
12	R2	139	0.0	139	0.0	2.456	1352.6	LOS F	10.7	75.0	1.00	2.23	4.94	0.2
Appro	bach	426	1.0	426	1.0	2.456	444.7	LOS F	10.7	75.0	0.41	1.11	1.69	3.3
All Ve	hicles	5012	10.0	4728 ^N	10.6	2.456	91.2	LOS F	40.4	313.3	0.89	0.99	1.19	16.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestrian M	ovement	Perform	nance							
Mov LD Crossing	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	FIOW	Delay	Service	QUI [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: Woodville Road										
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.5	218.8	0.94
East: Llewellyn	Avenue									
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94
West: Villawood	d Road									
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	232.1	218.1	0.94
All Pedestrians	158	64.3	LOS F	0.2	0.2	0.96	0.96	232.3	218.4	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

■ Network: 8 [2031 PM Peak With Dev (Network Folder: PM Peak)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Map Extract Default - Import - Import - Import Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Input Phase Sequence

_1

Movement Class: All Movement Classes

Vehio	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEM/ FLO [Total	AND WS HV]	ARRI FLO [Total	VAL WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERA OF [Veh.	AGE BACK QUEUE Dist]	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Wood	Iville Roa	ad											
1	L2	115	0.0	115	0.0	1.361	392.6	LOS F	35.8	270.0	1.00	2.37	2.88	3.0
31	T1	1702	10.2	1702	10.2	* 1.361	387.7	LOS F	35.8	270.0	1.00	2.41	2.88	2.5
Appro	bach	1817	9.6	1817	9.6	1.361	388.0	LOS F	35.8	270.0	1.00	2.41	2.88	2.5
East:	Binna I	Burra St												
21	L2	55	3.8	55	3.8	0.877	83.3	LOS F	6.8	48.3	1.00	1.02	1.35	2.9
5	T1	61	1.7	61	1.7	*0.877	79.4	LOS F	6.8	48.3	1.00	1.02	1.35	5.4
23	R2	112	0.0	112	0.0	0.877	87.5	LOS F	6.8	48.3	1.00	1.02	1.45	2.7
Appro	bach	227	1.4	227	1.4	0.877	84.3	LOS F	6.8	48.3	1.00	1.02	1.40	3.5
North	: Wood	ville Roa	d											
24	L2	182	1.2	174	1.2	0.495	6.9	LOS A	3.2	24.1	0.12	0.24	0.12	24.3
25	T1	2033	12.6	1957	13.1	0.495	1.4	LOS A	3.4	26.2	0.11	0.14	0.11	51.8
9	R2	29	100.0	29	100. 0	*0.644	87.0	LOS F	1.4	17.9	1.00	0.79	1.14	8.8
Appro	bach	2244	12.9	2160 ^N 1	13.3	0.644	3.0	LOS A	3.4	26.2	0.12	0.15	0.13	43.2
All Ve	hicles	4288	10.8	<mark>4205</mark> N 1	11.1	1.361	173.8	LOS F	35.8	270.0	0.55	1.18	1.39	4.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Pedestria	n Movement	t Perforr	nance								
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.	
ID CIOSSI	19 Flow	Delay	Service	QU [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed	
	ped/h	sec		ped	m			sec	m	m/sec	
South: Woodville Road											
P8 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94	
East: Binna	a Burra St										
P5 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	226.9	211.4	0.93	
West: Howa	att Street										
P4 Full	53	64.3	LOS F	0.2	0.2	0.96	0.96	222.7	206.0	0.92	
All Pedestri	ians 158	64.3	LOS F	0.2	0.2	0.96	0.96	227.0	211.5	0.93	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 24 March 2022 4:09:18 PM Project: C:\Users\engrr\OneDrive - traffwise.com.au\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\Response to Council\Technical Memo\Modelling of Intersections - Copy.sip9

A Traffic Engineering and Road Safety Consultancy

Contact Us info@traffwise.com.au